【題目】已知函數(shù)(為實數(shù),,).
(1)當函數(shù)的圖象過點,且方程有且只有一個根,求的表達式;
(2)在(1)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)若,當,,,且函數(shù)為偶函數(shù)時,試判斷能否大于?
【答案】(1)(2)或(3)
【解析】
(1)根據(jù),可得,再根據(jù)方程有且只有一個根,利用根的判別式再列出一個和的關系式,聯(lián)立方程組即可解得和的值.
(2)首先求出的函數(shù)關系式,然后根據(jù)函數(shù)的單調(diào)性進行解答,即可求出的取值范圍.
(3)由為偶函數(shù),求出,設,則,又知,故可得,最后把和代入求出.
解:(1)因為,
所以.
因為方程有且只有一個根,
所以.
所以.
即,.
所以.
(2)因為
.
所以當或時,
即或時,是單調(diào)函數(shù).
(3)為偶函數(shù),所以.
所以.
所以.
因為,
不妨設,則.
又因為,
所以.
所以.
此時.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列對任意滿足,下面給出關于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,,,分別是,,的中點.
(1)求異面直線與所成角的余弦值;
(2)棱上是否存在點,使得∥平面?請證明你的結論;
(3)求直線與平面所成角的余弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某港口的水深(米)是時間(,單位:小時)的函數(shù),下面是每天時間與水深的關系表:
經(jīng)過長期觀測,可近似的看成是函數(shù)
(1)根據(jù)以上數(shù)據(jù),求出的解析式;
(2)若船舶航行時,水深至少要米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)為了了解本年度數(shù)學競賽成績情況,從中隨機抽取了個學生的分數(shù)作為樣本進行統(tǒng)計,按照,,,,的分組作出頻率分布直方圖如圖所示,已知得分在的頻數(shù)為20,且分數(shù)在70分及以上的頻數(shù)為27.
(1)求樣本容量以及,的值;
(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在[-1,1]上的奇函數(shù),當x∈[-1,0]時,函數(shù)的解析式為f(x)= (a∈R).
(1)試求a的值;
(2)寫出f(x)在[0,1]上的解析式;
(3)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)如函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的范圍.
(3)若關于的方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區(qū)的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com