6.設(shè)復(fù)數(shù)z=-2+i(i是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|(2+z)•$\overline{z}$|等于( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5$\sqrt{2}$D.$\sqrt{10}$

分析 把z代入(2+z)•$\overline{z}$,利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式計(jì)算.

解答 解:∵z=-2+i,
∴(2+z)•$\overline{z}$=(2-2+i)•(-2-i)=i(-2-i)=1-2i,
則|(2+z)•$\overline{z}$|=$\sqrt{{1}^{2}+(-2)^{2}}=\sqrt{5}$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x+λ,x<1}\\{{2}^{x},x≥1}\end{array}\right.$(λ∈R),若對任意的a∈R都有f(f(a))=2f(a)成立,則λ的取值范圍是( 。
A.(0,2]B.[0,2]C.(-∞,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.使tanx≥1成立的x的集合為{x|$\frac{π}{4}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓Q:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),以線段F1F2為直徑的圓與橢圓Q有且僅有兩個(gè)交點(diǎn).
(1)求橢圓Q的方程;
(2)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)P,點(diǎn)P橫坐標(biāo)的取值范圍是[-$\frac{1}{4}$,0),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an}中各項(xiàng)均為正數(shù),Sn是其前n項(xiàng)和,且滿足2S3=8a1+3a2,a4=16,則S4=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且其圖象向右平移$\frac{π}{7}$個(gè)單位后得到函數(shù)g(x)=sinωx的圖象,則φ等于( 。
A.-$\frac{π}{14}$B.-$\frac{π}{7}$C.$\frac{π}{14}$D.$\frac{π}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},0≤x<1}\\{lnx+e,1≤x≤e}\end{array}\right.$在區(qū)間[0,e]上隨機(jī)取一個(gè)實(shí)數(shù)x,則f(x)的值不小于常數(shù)e的概率是( 。
A.$\frac{1}{e}$B.1-$\frac{1}{e}$C.$\frac{e}{1+e}$D.$\frac{1}{1+e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x-a,g(x)=x+2.
(1)當(dāng)a=1時(shí),求不等式f(x)+f(-x)≤g(x)的解集;
(2)求證:$f({\frac{2}}),f({-\frac{2}}),f({\frac{1}{2}})$中至少有一個(gè)不小于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1-ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A-D1E-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案