7.命題甲:動點P到兩個定點A,B的距離之和|PA|+|PB|=2a(常數(shù)a>0);命題乙:P點的軌跡是橢圓.則命題甲是命題乙的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也非必要條件

分析 由P點的軌跡是橢圓⇒動點P到兩個定點A,B的距離之和|PA|+|PB|=2a(常數(shù)a>0).反之不成立,其軌跡可能為一條線段.即可判斷出結(jié)論.

解答 解:由P點的軌跡是橢圓⇒動點P到兩個定點A,B的距離之和|PA|+|PB|=2a(常數(shù)a>0).
反之不成立,其軌跡可能為一條線段.
∴命題甲是命題乙的必要不充分條件.
故選:B.

點評 本題考查了橢圓的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.過兩點A(m2+2,m2-3),B(3-m-m2,2m)的直線L的傾斜角為45o,則m=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.對標有不同編號的6件正品和4件次品的產(chǎn)品進行檢測,不放回地依次摸出2件.在第一次摸出正品的條件下,第二次也摸到正品的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次實驗,得到數(shù)據(jù)如下:
零件的個數(shù)x(個)2345
加工時間y(小時)2.5344.5
(1)作出散點圖;
(2)求出y關(guān)于x的線性回歸方程y=bx+a;
(3)預(yù)測加工10個零件需要多少小時?
注:$\stackrel{∧}$=$\frac{{\sum_{i=1}^n({x_i}-\overline x)({y_i}-\overline y)}}{{\sum_{i=1}^n{{({x_i}-\overline x)}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{a}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.從甲、乙、丙三名學生中任選兩名學生參加某項活動,甲被選中的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在等差數(shù)列{an}中,給出以下結(jié)論.
①恒有a2+a8=a10
②數(shù)列{an}的前n項和公式不可能是Sn=n.
③若a1=12,S6=S14,則必有a9=0.
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某城市理論預(yù)測2017年到2021年人口總數(shù)(單位:十萬)與年份的關(guān)系如表所示:
年份2017+x01234
人口總數(shù)y5781119
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)據(jù)此估計2022年該城市人口總數(shù).
(附:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,a=$\overline{y}$-b$\overline{x}$)
考數(shù)據(jù):0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若A=$\frac{π}{3}$,b=2,△ABC的面積為$\frac{3\sqrt{3}}{2}$.
(1)求a和c的值;
(2)求sin(2B-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=a|x2-1|+x(x2-4)(a>0)在(-1,+∞)上(  )
A.零點的個數(shù)為1B.零點的個數(shù)為2
C.零點的個數(shù)為3D.零點的個數(shù)與a的值有關(guān)

查看答案和解析>>

同步練習冊答案