6.如圖,網(wǎng)格紙上小正方形邊長(zhǎng)為1,粗實(shí)線及粗虛線畫出的是某多面體的三視圖,則該多面體表面積為( 。
A.$10+\sqrt{5}$B.$7+3\sqrt{5}$C.$8+\sqrt{5}$D.8

分析 根據(jù)三視圖得出空間幾何體是鑲嵌在正方體中的四棱錐O-ABCD,正方體的棱長(zhǎng)為2,A,D為棱的中點(diǎn),利用球的幾何性質(zhì)求解即可.

解答 解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O-ABCD,
正方體的棱長(zhǎng)為2,A,D為棱的中點(diǎn)

底面ABCD的面積為:2×$\sqrt{{2}^{2}+{1}^{2}}$=2$\sqrt{5}$,
側(cè)面△OCD的面積為:$\frac{1}{2}$×2×2=2,
側(cè)面△OBC的面積為:$\frac{1}{2}$×2×2=2,
側(cè)面△OAD的面積為:$\frac{1}{2}$×2×$\sqrt{5}$=$\sqrt{5}$,
側(cè)面△OAB的面積為:$\sqrt{\frac{3+\sqrt{5}+2\sqrt{2}}{2}•\frac{-3+\sqrt{5}+2\sqrt{2}}{2}•\frac{3-\sqrt{5}+2\sqrt{2}}{2}•\frac{3+\sqrt{5}-2\sqrt{2}}{2}}$=3,
故表面積S=7+3$\sqrt{5}$,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的幾何特征,簡(jiǎn)單幾何體的三視圖,求側(cè)面△OAB的面積難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{2}}{2}$,過(guò)E的右焦點(diǎn)且垂直于橢圓長(zhǎng)軸的直線與橢圓交于A,B兩點(diǎn),|AB|=2.
(Ⅰ)求橢圓方程;
(Ⅱ)過(guò)點(diǎn)P(0,$\sqrt{3}$)的動(dòng)直線l與橢圓E交于的兩點(diǎn)M,N(不是的橢圓頂點(diǎn)),是否存在實(shí)數(shù)λ,使$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$為定值?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax2-ax-lnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1
(Ⅰ)求f(x)的最小正周期及對(duì)稱中心
(Ⅱ)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在非等腰三角形ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,若a,b,2c成等比數(shù)列,3a2,b2,3c2成等差數(shù)列,則cosB=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx的反函數(shù)為G(x),函數(shù)g(x)=$\frac{{e}^{ax}}{x}$在[1,+∞)上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的最小值;
(Ⅱ)若x0是f(x)=$\frac{1}{G(x)}$的根且x0∈(1,2),當(dāng)a=1時(shí),函數(shù)m(x)=min{xf(x),$\frac{1}{g(x)}$}的圖象與直線y=n(n∈R)在(1,+∞)上的交點(diǎn)的橫坐標(biāo)為x1,x2(x1<x2),證明:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)A($\sqrt{3}$,2),B(0,3),C(0,1),則∠BAC=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=1,an+1=2Sn+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若$\frac{_{n}}{{a}_{n}}$=3n-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.當(dāng)雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+4}$=1(-2<m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}x$B.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案