8.已知異面直線a與b所成角為60°,過空間內(nèi)一定點P且與直線a、b所成角均為60°的直線有( 。l.
A.1B.2C.3D.4

分析 利用異面直線所成角的概念,平移兩直線a,b,可知當(dāng)l為120°的角分線時滿足題意;把60°角的角分線旋轉(zhuǎn)又可得到滿足條件的兩條直線,則答案可求.

解答 解:把直線a,b平移,使兩直線經(jīng)過P,如圖,

則a,b所成角為60°,其補角為120°,當(dāng)l經(jīng)過P且為120°角的角平分線時,l與a,b均成60°角,
設(shè)60°角的角平分線為c,把c繞P旋轉(zhuǎn),且在旋轉(zhuǎn)過程中保持與a,b成等角θ,則θ逐漸增大,
上下旋轉(zhuǎn)各能得到一個位置,使l與a,b所成的角均為60°,
∴這樣的直線l有3條.
故選:C.

點評 本題考查異面直線所成的角,關(guān)鍵是對異面直線所成角的概念的理解,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l與拋物線C:y2=2x交于A,B兩點,O為坐標(biāo)原點,若直線OA,OB的斜率k1,k2滿足k1k2=$\frac{2}{3}$,則直線l過定點(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個正方體的表面積與一個球體的表面積相等,那么它們的體積比是( 。
A.$\frac{\sqrt{6π}}{6}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{2π}}{2}$D.$\frac{3\sqrt{π}}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知隨機變量服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=( 。
A.0.1B.0.2C.0.4D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知關(guān)于x的不等式$|{x-1}|-|{2x-1}|>{log_{\frac{1}{3}}}a$(其中a>0).
(1)當(dāng)a=3時,求不等式的解集;
(2)若不等式有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.F1、F2為雙曲線C:$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點,點M在雙曲線上且∠F1MF2=60°,則${S_{△{F_1}M{F_2}}}$=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.sin20°sin80°-cos160°sin10°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(-2,4),則$\overrightarrow{c}$等于(  )
A.-$\overrightarrow{a}$+3$\overrightarrow$B.$\overrightarrow{a}$-3$\overrightarrow$C.3$\overrightarrow{a}$-$\overrightarrow$D.-3$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)p:0<x<5,q:x2-4x-21<0,那么p是q的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案