【題目】已知函數(shù) .

1)求時,的單調(diào)區(qū)間;

2)若存在,使得對任意的,都有,求的取值范圍,并證明.

【答案】1為減函數(shù),為增函數(shù);(2,證明見解析

【解析】

1)由,對函數(shù)求導(dǎo),得到 ,用導(dǎo)數(shù)法方法判斷其單調(diào)性,求出上為增函數(shù),再由,即可求出結(jié)果;

2)先對函數(shù)求導(dǎo),得到,根據(jù)題意,得到的極小值點(diǎn),故,設(shè),對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,得到,推出,再令,用導(dǎo)數(shù)的方法求出其單調(diào)性,進(jìn)而可得出結(jié)果.

1)當(dāng)時,,

,

,則,

所以,由;由,

即函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

因此,所以上單調(diào)遞增;

上為增函數(shù).

又因?yàn)?/span>

所以當(dāng)時,;當(dāng)時,;

為減函數(shù),為增函數(shù).

(2) ,

因?yàn)?/span>對任意的恒成立,所以的極小值點(diǎn),故.

設(shè),則當(dāng) 時,,

所以上為增函數(shù),而,.

由①可知,從而 ,故.

又由,即,

所以

.

,其中,則,上的減函數(shù),

,而

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,討論的單調(diào)性;

2)設(shè)函數(shù),若存在不相等的實(shí)數(shù),,使得,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線極坐標(biāo)方程為.

(1)求直線的普通方程以及曲線的參數(shù)方程;

(2)當(dāng)時,為曲線上動點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知aR,函數(shù)f(x)=(-x2ax)ex(xR).

(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形是直角梯形,,,底面,,,的中點(diǎn).

1)求證:平面平面;

2上是否存在點(diǎn),使得三棱錐的體積是三棱錐體積的.若存在,請說明點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDEABDE,ABAD,△ACD是正三角形.ADDE2AB2,EC2FCD的中點(diǎn).

1)求證AF∥平面BCE;

2)求直線AD與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。

晉級成功

晉級失敗

合計

16

50

合計

(1)求圖中的值;

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?

(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望

(參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的極值點(diǎn),求fx)的極大值;

(Ⅱ)求a的范圍,使得fx≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.

查看答案和解析>>

同步練習(xí)冊答案