19.已知命題$p:?{x_0}∈R,x_0^2+2{x_0}-m-1<0$,命題$q:對于?x∈[{1,4}],x+\frac{4}{x}>m$.
(1)寫出命題p的否定形式;并求當(dāng)命題p為真時,實數(shù)m的范圍;
(2)若p和q一真一假,求實數(shù)m的取值范圍.

分析 (1)根據(jù)全稱命題的否定是特稱命題,利用二次函數(shù)的圖象和性質(zhì)即可求出實數(shù)m的范圍;
(2)先求出關(guān)于命題P,q的m的范圍,通過討論p真q假或p假q真,得到不等式組,解出即可

解答 解:(1)命題p的否定形式:?x0∈R,x02+2x0-m-1≥0;
當(dāng)命題$p:?{x_0}∈R,x_0^2+2{x_0}-m-1<0$為真時,△=4-4(-m-1)>0⇒m>-2,
∴實數(shù)m的范圍為:(-2,+∞)
(2)命題$q:對于?x∈[{1,4}],x+\frac{4}{x}>m$為真時,m<(x+$\frac{4}{x}$)min,x∈[1,4]時,(x+$\frac{4}{x}$)min=4,⇒m<4,
若p真q假:m>-2且m≥4⇒m≥4;  若p假q真:m≤-2且m<4⇒m≤-2;
綜上:若p和q一真一假,求實數(shù)m的取值范圍:m≥4;或m≤-2.

點評 本題考查了命題的否定,考查了復(fù)合命題的真假問題,考查了全稱命題、特稱命題的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知對于任意兩個實數(shù)x,y,都有f(x+y)=f(x)+f(y)成立.若f(-3)=2,則f(2)=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知二次函數(shù)f(x)=ax2+(a-1)x+a.
(1)試討論函數(shù)y=f(x)的奇偶性,并說明理由;
(2)若函數(shù)$g(x)=f(x)+\frac{{1-({a-1}){x^2}}}{x}$在(2,3)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對于定義域分別為Df、Dg的函數(shù)f(x)、g(x),規(guī)定:$h(x)=\left\{\begin{array}{l}f(x)•g(x)\;\;\;當(dāng)x∈{D_f}且x∈{D_g}時\\ f(x)\;\;\;\;\;\;\;\;\;\;\;\;當(dāng)x∈{D_f}且x∉{D_g}時\\ g(x)\;\;\;\;\;\;\;\;\;\;\;\;當(dāng)x∉{D_f}且x∈{D_g}時\end{array}\right.$
(1)設(shè)$f(x)=\frac{1}{x}\;,\;\;g(x)=4{x^2}+1$,寫出h(x)的解析式.
(2)求(1)中函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知空間中點A(x,1,2)和點B(2,3,4),且$|{AB}|=2\sqrt{6}$,則實數(shù)x的值是( 。
A.6或-2B.-6或2C.3或-4D.-3或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且當(dāng)x∈(-1,1]時,f(x)=|x|,則函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點的個數(shù)是( 。
A.2B.4C.6D.多于6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線y=x+b與橢圓$\frac{{x}^{2}}{2}$+y2=1相交于A,B兩個不同的點.
(1)求實數(shù)b的取值范圍;
(2)已知弦AB的中點P的橫坐標(biāo)是$-\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法中,正確的是( 。
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.命題“若x=y,則sinx=siny”的逆否命題為真命題
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.若p∧q為假命題,則p、q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC的三頂點分別為A(1,4,1),B(1,2,3),C(2,3,1).則AB邊上的高等于( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案