△ABC中,角B=60°,若
BA
BC
=4
3
,則△ABC的面積等于
 
考點(diǎn):正弦定理,平面向量數(shù)量積的運(yùn)算
專題:解三角形
分析:已知等式左邊利用平面向量的數(shù)量積運(yùn)算法則計(jì)算,把cosB的值的求出ac的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:∵△ABC中,角B=60°,
BA
BC
=4
3
,
∴cacosB=
1
2
ca=4
3
,即ac=8
3
,
則△ABC面積S=
1
2
acsinB=
1
2
×8
3
×
3
2
=6,
故答案為:6
點(diǎn)評(píng):此題考查了正弦定理,平面向量的數(shù)量積運(yùn)算,以及三角形的面積公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,若已知點(diǎn)(n,
Sn
n
)
均在函數(shù)y=x+1圖象上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
4
anan+1
,設(shè)Tn是{bn}前n項(xiàng)和,求使m>Tn對(duì)所有n∈N*都成立的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
+lg(x+1)的定義域?yàn)?div id="asaoaee" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:f(x)=ax為增函數(shù),q:函數(shù)q(x)=x+
a
x
(a>0)在[2,+∞)上單調(diào)遞增,若p且q 為假,p或q為真,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ex2

(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)若函數(shù)g(x)=f(x)+3的最大值為M,求函數(shù)g(x)的最小值(用M表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為常數(shù)且a<0,y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+
a2
x
-2,若f(x)≥a2-1對(duì)一切x≥0都成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為橢圓
x2
16
+
y2
9
=1上一點(diǎn),F(xiàn)1、F2為左右焦點(diǎn),若∠F1PF2=60°
(1)求△F1PF2的面積;
(2)求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a>0且a≠1時(shí),函數(shù)f(x)=ax+3必過(guò)定點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案