10.設(shè)Sn是等比數(shù)列{an}的前n項和為S4=4S2,則$\frac{{a}_{3}{a}_{8}}{{{a}_{5}}^{2}}$ 的值為( 。
A.-2或-1B.1或2C.±$\sqrt{3}$或-1D.±1或2

分析 利用等比數(shù)列的通項公式、求和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,則q≠1.
∵S4=4S2,$\frac{{q}^{4}-1}{q-1}$=$\frac{4({q}^{2}-1)}{q-1}$,解得q2=3 或q=-1,
則$\frac{{a}_{3}{a}_{8}}{{{a}_{5}}^{2}}$=$\frac{{{a}_{1}}^{2}•{q}^{9}}{{{a}_{1}}^{2}•{q}^{8}}$=q,
所以$\frac{{a}_{3}{a}_{8}}{{{a}_{5}}^{2}}$ 的值為±$\sqrt{3}$或-1.
故選:C.

點評 本題考查等比數(shù)列的通項與求和,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示,某幾何體的三視圖中,正視圖和俯視圖都是腰長為1的等腰直角三角形,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=-5+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.滿足條件AB=2,AC=$\sqrt{3}$BC的三角形ABC面積的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.小強和小華兩位同學(xué)約定下午在大良鐘樓公園噴水池旁見面,約定誰先到后必須等10分鐘,這時若另一人還沒有來就可以離開.如果小強是1:40-2:00到達(dá)的,假設(shè)小華在1點到2點內(nèi)到達(dá),且小華在 1點到2點之間何時到達(dá)是等可能的,則他們會面的概率是$\frac{17}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值.
(2)求函數(shù)定義域:$y=\sqrt{-2{{cos}^2}x+3cosx-1}+lg(36-{x^2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x>0,則$\sqrt{\frac{1}{{x}^{2}+4}}$+$\sqrt{\frac{x}{x+2}}$的取值范圍是(0,$\frac{3\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“?x0<0,(x0-1)(x0+2)≥0”的否定是(  )
A.?x0>0,(x0-1)(x0+2)<0B.?x0<0,(x0-1)(x0+2)<0
C.?x>0,(x-1)(x+2)≥0D.?x<0,(x-1)(x+2)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,c=2$\sqrt{3}$,且asinA-csinC=(a-b)sinB.
(Ⅰ)求角C的值;
(Ⅱ)若c+bcosA=a(4cosA+cosB),求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案