11.已知函數(shù)f(x)=$\frac{1}{3}$x3-4x+m,(m∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[0,3]上的最值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的極大值和極小值,從而求出函數(shù)的最值即可.

解答 解:(Ⅰ)f′(x)=x2-4=(x-2)(x+2)
由f′(x)>0得x>2,或x<-2
由f′(x)<0得-2<x<2
所以,f(x)在(-∞,-2)遞增,在(-2,2)遞減,在(2,+∞)遞增;
(Ⅱ)由f′(x)=0得x=2或x=-2,
∴f(x)的極小值是f(2)=-$\frac{16}{3}$+m,
f(x)的極大值是f(-2)=$\frac{16}{3}$+m;
又∵f(0)=m,f(3)=-3+m
∴f(x)在[0,3]的最大值為f(0)=m,
故最小值是f(2)=-$\frac{16}{3}$+m.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.化簡(jiǎn):$\frac{sin(4π-α)cos(\frac{9π}{2}+α)}{sin(\frac{11π}{2}+α)cos(2π-α)}$-$\frac{tan(5π-α)}{sin(3π-α)sin(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a2+a3=9,a4+a5+a6=27,求a7+a8+a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)P為直線(xiàn)y=x+1上的一點(diǎn),M,N分別為圓C1:(x-4)2+(y-1)2=4與圓C2:x2+(y-2)2=1上的點(diǎn),則|PM|-|PN|的最大值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.過(guò)點(diǎn)(1,0)且與直線(xiàn)2x-y-1=0垂直的直線(xiàn)方程是( 。
A.2x-y-2=0B.x+2y-1=0C.2x+y-2=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=aex(x+1)(其中e為自然對(duì)數(shù)的底數(shù)),g(x)=x2+4x+b,已知它們?cè)趚=0處有相同的切線(xiàn).
(1)求函數(shù)y=f(x)的增區(qū)間;
(2)求曲線(xiàn)y=g(x)和直線(xiàn)y=x+2所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從A、B、C、D四首不同曲目中任選一首
(1)求甲、乙兩班選擇不同曲目的概率
(2)設(shè)這四個(gè)班級(jí)總共選取了X首曲目,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x3-x.
(1)求曲線(xiàn)y=f(x)在點(diǎn)M(1,0)處的切線(xiàn)方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=4,AB=2AA1,M是AB的中點(diǎn),△A1MC1是等腰三角形,D為CC1的中點(diǎn),E為BC上一點(diǎn).
(1)若DE∥平面A1MC1,求$\frac{BE}{EC}$;
(2)平面BCC1B1與平面A1MC1所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案