5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成直角三角形,且該三角形的面積為1.
(Ⅰ)求橢圓年C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左右焦點(diǎn),若橢圓C的一個(gè)內(nèi)接平行四邊形的一組對(duì)邊過(guò)點(diǎn)F1和F2,求這個(gè)平行四邊形面積的最大值.

分析 (1)由題意可知求得a=$\sqrt{2}$c,利用三角形的面積公式即可求得a和b的值,求得橢圓方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)F2的直線(xiàn)l:x=ty+1與橢圓交于A,B兩點(diǎn),與橢圓方程聯(lián)立得由此利用韋達(dá)定理、弦長(zhǎng)公式、平行四邊形面積、函數(shù)單調(diào)性,能求出平行四邊形面積的最大值.

解答 解:(1)由勾股定理可知:丨PF1丨+丨PF2丨=丨F1F2丨,即2a2=4c2,則a=$\sqrt{2}$c,
b2=a2-c2=c2,
S=$\frac{1}{2}$丨F1F2丨×丨OP丨=$\frac{1}{2}$×2c×b=1,即b=c=1,
∴a=$\sqrt{2}$,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)設(shè)過(guò)橢圓右焦點(diǎn)F2的直線(xiàn)l:x=ty+1與橢圓交于A,B兩點(diǎn),
則$\left\{\begin{array}{l}{x=ty+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(t2+2)y2+2ty-1=0,
由韋達(dá)定理,得:y1+y2=-$\frac{2t}{{t}^{2}+2}$,y1y2=-$\frac{1}{{t}^{2}+2}$,
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{\sqrt{8{t}^{2}+8}}{{t}^{2}+2}$=$\frac{2\sqrt{2}\sqrt{{t}^{2}+1}}{{t}^{2}+2}$,
∴S△OAB=${S}_{△O{F}_{1}A}$+${S}_{△O{F}_{1}B}$=,$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{\sqrt{2}\sqrt{{t}^{2}+1}}{{t}^{2}+2}$,
橢圓C的內(nèi)接平行四邊形面積為S=4S△OAB=$\frac{4\sqrt{2}\sqrt{{t}^{2}+1}}{{t}^{2}+2}$,
令m=$\sqrt{1+{t}^{2}}$≥1,則S=f(m)=$\frac{4\sqrt{2}m}{{m}^{2}+1}$=$\frac{4\sqrt{2}}{m+\frac{1}{m}}$,
注意到S=f(m)在[1,+∞)上單調(diào)遞減,
∴Smax=f(1)=4$\sqrt{2}$,
當(dāng)且僅當(dāng)m=1,即t=0時(shí)等號(hào)成立.
故這個(gè)平行四邊形面積的最大值為4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、弦長(zhǎng)公式、三角形面積計(jì)算公式、換元法、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù).若f(x)的最小正周期是π,且當(dāng)$x∈[0,\frac{π}{2}]$時(shí),f(x)=sinx,則$f(\frac{5}{3}π)$的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)在球O1上,又知球O2與此正三棱柱的5個(gè)面都相切,求球O1與球O2的表面積之比( 。
A.5:1B.2:1C.4:1D.$\sqrt{3}$:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\sqrt{2}$sinωx-$\sqrt{2}$cosωx(ω<0),若y=f(x+$\frac{π}{4}$)的圖象與y=f(x-$\frac{π}{4}$)的圖象重合,記ω的最大值為ω0,函數(shù)g(x)=cos(ω0x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間為( 。
A.[-$\frac{1}{3}$π+$\frac{kπ}{2}$,-$\frac{π}{12}$+$\frac{kπ}{2}$](k∈Z)B.[-$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{π}{6}$+$\frac{kπ}{2}$](k∈Z)
C.[-$\frac{1}{3}$π+2kπ,-$\frac{π}{12}$+2kπ](k∈Z)D.[-$\frac{π}{12}$+2kπ,-$\frac{π}{6}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.等差數(shù)列{an}的公差d≠0,且a3,a5,a15成等比數(shù)列,若a5=5,Sn為數(shù)列{an}的前n項(xiàng)和,則數(shù)列{$\frac{{S}_{n}}{n}$}的前n項(xiàng)和取最小值時(shí)的n為( 。
A.3B.3或4C.4或5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.對(duì)函數(shù)f(x)=$\frac{cosx+m}{cosx+2}$,若?a,b,c∈R,f(a),f(b),f(c)都為某個(gè)三角形的三邊長(zhǎng),則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{5}{4}$,6)B.($\frac{5}{3}$,6)C.($\frac{7}{5}$,5)D.($\frac{5}{4}$,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在函數(shù)y=cosx,$x∈[{-\frac{π}{2},\frac{π}{2}}]$的圖象上有一點(diǎn)P(t,cost),若該函數(shù)的圖象與x軸、直線(xiàn)$x=-\frac{π}{2},x=t$,圍成圖形(如圖陰影部分)的面積為S,則函數(shù)S=g(t)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$則z=2x+3y的最大值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知向量$\overrightarrow{BA}$=(1,$\sqrt{3}$),$\overrightarrow{BC}$=(2,0),
(1)求∠BAC的大小
(2)求向量$\overrightarrow{BA}$在向量AC方向上的投影.

查看答案和解析>>

同步練習(xí)冊(cè)答案