A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 由已知可函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,可得:f($\frac{5π}{3}$π)=f(-$\frac{π}{3}$π)=-f($\frac{π}{3}$),進而得到答案.
解答 解:∵函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,
∴f($\frac{5π}{3}$)=f($\frac{5π}{3}$-2π)=f(-$\frac{π}{3}$)=-f($\frac{π}{3}$),
∵當$x∈[0,\frac{π}{2}]$時,f(x)=sinx,
∴-f($\frac{π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$,
故選:D.
點評 本題考查的知識點是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{13}$ | B. | $-\frac{4}{13}$ | C. | $\frac{7}{13}$ | D. | $-\frac{7}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
及格 | 不及格 | 合計 | |
掌握教學法 | 36 | 8 | 44 |
常規(guī)教學法 | 40 | 16 | 56 |
合計 | 76 | 24 | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$ | B. | $[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ | ||
C. | $[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$ | D. | $[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com