分析 (1)將直線方程代入橢圓方程,由韋達定理及向量數(shù)量積的坐標運算,即可求得p,求得拋物線方程;
(2)由(1)可知,利用弦長公式即可求得弦長|AB|.
解答 解:(1)設A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=kx+2}\end{array}\right.$,整理得x2-2pkx-4p=0,
其中△=4p2k2+16p>0,
則x1+x2=2pk,x1x2=-4p,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=x1x2+$\frac{{x}_{1}^{2}}{2p}$•$\frac{{x}_{2}^{2}}{2p}$=-4p+4,
由已知,-4p+4=2,解得p=$\frac{1}{2}$,
∴拋物線E的方程為x2=y;
(2)由(1)可知:x1+x2=1,x1x2=-2,
則丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=3$\sqrt{2}$,
弦長|AB|=3$\sqrt{2}$.
點評 本題考查直線與拋物線的位置關系,考查拋物線的標準方程,韋達定理,弦長公式及向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
參加運動 | 不參加運動 | 合計 | |
男大學生 | 20 | 8 | 28 |
女大學生 | 12 | 16 | 28 |
合計 | 32 | 24 | 56 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,-2),r=2 | B. | (1,-2),$r=\sqrt{2}$ | C. | (-1,2),r=2 | D. | (-1,2),$r=\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f'(x)=a | B. | f'(x)=b | C. | f'(x0)=a | D. | f'(x0)=b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5:1 | B. | 2:1 | C. | 4:1 | D. | $\sqrt{3}$:1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com