分析 (1)由正弦定理得:sinBtanB=$\sqrt{3}$(sinAcosC+sinCcosA)=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB,求出tanB=$\sqrt{3}$,由此求出B=$\frac{π}{3}$.
(2)由△ABC的面積為$\frac{7\sqrt{3}}{3}$,得到$ac=\frac{28}{3}$,再由a+c=8,利用余弦定理能求出b的值.
解答 解:(1)∵△ABC的內角A,B,C的對邊分別為a,b,c,且btanB=$\sqrt{3}({acosC+ccosA})$,
∴由正弦定理得:
sinBtanB=$\sqrt{3}$(sinAcosC+sinCcosA)=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB,
∵B∈(0,π),∴sinB≠0,∴tanB=$\sqrt{3}$,
∵B∈(0,π),∴B=$\frac{π}{3}$.
(2)∵△ABC的面積為$\frac{7\sqrt{3}}{3}$,∴$\frac{1}{2}acsinB$=$\frac{\sqrt{3}}{4}ac=\frac{7\sqrt{3}}{3}$,
∴$ac=\frac{28}{3}$,
∵a+c=8,
∴在△ABC中,由余弦定理得:
b2=a2+c2-2accosB=(a+c)2-3ac=36,
∴b=6.
點評 本題考查三角形中角的求法,考查邊的求法,考查正弦定理、余弦定理、誘導公式、同角三角函數(shù)關系式、三角函數(shù)恒等式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m>1 | B. | m≥2 | C. | 1<m≤2 | D. | 1≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
女 | 男 | 總計 | |
讀營養(yǎng)說明 | 16 | 28 | 44 |
不讀營養(yǎng)說明 | 20 | 8 | 28 |
總計 | 36 | 36 | 72 |
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
A. | 能夠以99.5%的把握認為性別與讀營養(yǎng)說明之間無關系 | |
B. | 能夠以99.9%的把握認為性別與讀營養(yǎng)說明之間無關系 | |
C. | 能夠以99.5%的把握認為性別與讀營養(yǎng)說明之間有關系 | |
D. | 能夠以99.9%的把握認為性別與讀營養(yǎng)說明之有無關系 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{56}{50}$ | B. | $\frac{57}{50}$ | C. | $\frac{58}{50}$ | D. | $\frac{59}{50}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com