17.函數(shù)$f(x)={x^2}+\sqrt{a}x-b+\frac{1}{4}$(a,b是正實數(shù))只有一個零點,則ab的最大值為$\frac{1}{16}$.

分析 由題意可得a+4b=1,由基本不等式可得.

解答 解:∵函數(shù)f(x)=x2+$\sqrt{a}$x-b+$\frac{1}{4}$只有一個零點,
∴△=a-4(-b+$\frac{1}{4}$)=0,∴a+4b=1,
∴1=a+4b≥2$\sqrt{a•4b}$=4$\sqrt{ab}$,當且僅當a=4b=$\frac{1}{2}$時取等號,
∴ab≤$\frac{1}{16}$,
∴ab的最大值為$\frac{1}{16}$,
故答案為:$\frac{1}{16}$.

點評 本題考查基本不等式,得出a+4b=1是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.甲、乙兩人各進行一次射擊,如果兩人擊中目標的概率是0.8.計算,至少有1人擊中目標的概率0.96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)a=2,b=log23,c=log32,則( 。
A.b>a>cB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP:PF=1:2,AD=7cm,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x) 的一個“巧值點”,下列函數(shù)中,有“巧值點”的函數(shù)是①③⑤.(寫出所有正確的序號)
①f(x)=x2
②f(x)=e-x
③f(x)=lnx
④f(x)=2+sinx
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b,c均為正數(shù).
(1)若a+b=1,求$\frac{1}{a}+\frac{4}$的最小值;
(2)若a+b+c=m,求證:$\frac{a^2}+\frac{b^2}{c}+\frac{c^2}{a}$≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=2\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+sin2x$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若將f(x)的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(ln5)0+($\frac{9}{4}$)0.5+$\sqrt{(1-\sqrt{2})^{2}}$-2${\;}^{lo{g}_{4}2}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在復(fù)平面內(nèi),復(fù)數(shù)z滿足z(1-i)=i,則復(fù)數(shù)z對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案