分析 (1)根據正弦定理和兩角和的正弦公式,根據特殊角的三角函數值即可求出,
(2)根據余弦定理求出b即可
解答 解:(1)因為(2a-c)cos B=bcos C,由正弦定理,得
(2sin A-sin C)cos B=sin Bcos C,
即2sin Acos B=sin Ccos B+sin Bcos C=sin(C+B)=sin A.
在△ABC中,0<A<π,sin A>0,
所以cos B=$\frac{1}{2}$.
又因為0<B<π,
故B=$\frac{π}{3}$.
(2)因為$a=c=\sqrt{3}$,由余弦定理得b2=a2+c2-2accos B,
所以b2=3.
所以$b=\sqrt{3}$.
點評 本題考查正余弦定理的應用,涉及三角函數的恒等變形,關鍵是熟悉三角函數的恒等變形的公式.
科目:高中數學 來源: 題型:選擇題
A. | 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用 | |
B. | 每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產生藥物中毒 | |
C. | 每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用 | |
D. | 首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com