19.在一項(xiàng)調(diào)查中有兩個(gè)變量x(單位:千元)和y(單位:t),如圖是由這兩個(gè)變量近8年來(lái)的取值數(shù)據(jù)得到的散點(diǎn)圖,那么適宜作為y關(guān)于x的回歸方程類型的是(  )
A.y=a+bxB.y=c+d$\sqrt{x}$C.y=m+nx2D.y=p+qex(q>0)

分析 由散點(diǎn)圖可得,圖象是拋物線形狀,則適宜作為y關(guān)于x的回歸方程類型的是y=c+d$\sqrt{x}$.

解答 解:由散點(diǎn)圖可得,圖象是拋物線形狀,則適宜作為y關(guān)于x的回歸方程類型的是y=c+d$\sqrt{x}$,
故選B.

點(diǎn)評(píng) 本題考查散點(diǎn)圖,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD
(1)在圖中畫出過(guò)點(diǎn)B,D的平面α,使得α∥平面AEF(必須說(shuō)明畫法,不需證明);
(2)若二面角α-BD-C是45°,求FB與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{2}{3}$,F(xiàn)1,F(xiàn)2分別是它的左、右焦點(diǎn),且存在直線l,使F1,F(xiàn)2關(guān)于l的對(duì)稱點(diǎn)恰好為圓C:x2+y2-4mx-2my+5m2-4=0(m∈R,m≠0)的一條直徑的兩個(gè)端點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線l與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),射線F1A,F(xiàn)1B與橢圓E分別相交于點(diǎn)M,N,試探究:是否存在數(shù)集D,當(dāng)且僅當(dāng)p∈D時(shí),總存在m,使點(diǎn)F1在以線段MN為直徑的圓內(nèi)?若存在,求出數(shù)集D;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.復(fù)數(shù)z=(1+i)+(-2+2i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若數(shù)列{An}對(duì)任意的n∈N*,都有${A_{n+1}}={A_n}^k$(k≠0),且An≠0,則稱數(shù)列{An}為“k級(jí)創(chuàng)新數(shù)列”.
(1)已知數(shù)列{an}滿足${a_{n+1}}=2{a_n}^2+2{a_n}$且${a_1}=\frac{1}{2}$,試判斷數(shù)列{2an+1}是否為“2級(jí)創(chuàng)新數(shù)列”,并說(shuō)明理由;
(2)已知正數(shù)數(shù)列{bn}為“k級(jí)創(chuàng)新數(shù)列”且k≠1,若b1=10,求數(shù)列{bn}的前n項(xiàng)積Tn
(3)設(shè)α,β是方程x2-x-1=0的兩個(gè)實(shí)根(α>β),令$k=\frac{β}{α}$,在(2)的條件下,記數(shù)列{cn}的通項(xiàng)${c_n}={β^{n-1}}•{log_{b_n}}{T_n}$,求證:cn+2=cn+1+cn,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知正三棱柱ABC-A1B1C1的頂點(diǎn)A1,B1,C1在同一球面上,且平面ABC經(jīng)過(guò)球心,若此球的表面積為4π,則該三棱柱的側(cè)面積的最大值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$個(gè)單位之后圖象與g(x)=cos2x的圖象重合,則φ=(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,若a=18,b=24,A=30°,則此三角形解的個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,G是△ABC的重心,D為BC的中點(diǎn),$\overrightarrow{AB}+\overrightarrow{AC}$=λ$\overrightarrow{GD}$,則λ的值為( 。
A.3B.4C.6D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案