分析 (1)消去參數(shù),求出P點(diǎn)軌跡方程的普通方程即可,根據(jù)y=ρsinθ,x=ρcosθ求出曲線C的直角坐標(biāo)方程即可;
(2)求出圓心的坐標(biāo),根據(jù)圓心與直線的距離求出|PM|的最值即可.
解答 解:(1)由$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$,α∈[0,2π),
得點(diǎn)P的軌跡方程(x-1)2+y2=1,
又由ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,
得ρ=$\frac{9}{sinθ+cosθ}$,
∴ρsinθ+ρcosθ=9,
∴曲線C的直角坐標(biāo)方程為x+y-9=0;
(2)圓(x-1)2+y2=1的圓心(1,0),
到直線x+y-9=0的距離為:
d=$\frac{|1+0-9|}{\sqrt{1+1}}$=4$\sqrt{2}$,
又圓的半徑為1,
所以|PQ|min=4$\sqrt{2}$-1,|PQ|max不存在.
點(diǎn)評 本題考查了普通方程以及極坐標(biāo)方程和參數(shù)方程的轉(zhuǎn)化,考查點(diǎn)到直線的距離,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{QR}$ | B. | $\overrightarrow{PD}$ | C. | $\frac{1}{2}\overrightarrow{QR}$ | D. | $\frac{1}{2}\overrightarrow{PD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2017 | B. | 2016 | C. | 2015 | D. | 2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}+\frac{2π}{3}$ | B. | 4$+\frac{2π}{3}$ | C. | 2$\sqrt{2}+\frac{π}{3}$ | D. | 4$+\frac{π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com