11.${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$.

分析 利用定積分的運(yùn)算性質(zhì),根據(jù)定積分的幾何意義,即可求得答案,

解答 解:${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=${∫}_{0}^{1}$2xdx+${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,
由定積分的幾何意義可知:${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示單位圓面積的$\frac{1}{4}$,即${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$,
${∫}_{0}^{1}$2xdx=x2${丨}_{0}^{1}$=1,
∴${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$,
故答案為:1+$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查定分的運(yùn)算性質(zhì)及定積分的幾何意義,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.甲、乙、丙、丁、戊5個(gè)人排成一排,其中丙必須排在甲、乙之間(不一定相鄰),則不同的排法種數(shù)為( 。
A.80B.40C.32D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知an+1=Sn+2(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知復(fù)數(shù)z滿足(2-i)z=1+i(i為虛數(shù)單位),則$\overline z$=( 。
A.$\frac{1}{5}+\frac{3}{5}i$B.$\frac{1}{5}-\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$-\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=x2+x-1,則f[f(-1)]=(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,1)$,且$\overrightarrow a⊥\overrightarrow b$,則m的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某校為了了解A,B兩班學(xué)生寒假期間觀看《中國(guó)詩(shī)詞大會(huì)》的時(shí)長(zhǎng),分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,將他們觀看的時(shí)長(zhǎng)(單位:小時(shí))作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì)哪個(gè)班的學(xué)生平均觀看的時(shí)間較長(zhǎng);
(2)從A班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為b,求a>b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lnx+bx-c,f(x)在點(diǎn)(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若在區(qū)間$[{\frac{1}{2},3}]$內(nèi),恒有f(x)≥2lnx+kx成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.經(jīng)國(guó)務(wù)院批復(fù)同意,鄭州成功入圍國(guó)家中心城市,某校學(xué)生團(tuán)針對(duì)“鄭州的發(fā)展環(huán)境”對(duì)20名學(xué)生進(jìn)行問(wèn)卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(Ⅰ)分別計(jì)算男生女生打分的平均分,并用數(shù)學(xué)特征評(píng)價(jià)男女生打分的數(shù)據(jù)分布情況;
(Ⅱ)如圖2按照打分區(qū)間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案