【題目】如圖,四棱錐中,底面是以為中心的菱形,底面上一點,且

1)求的長;

2)求二面角的余弦值.

【答案】12

【解析】

1)建立空間直角坐標系,用坐標表示出,再根據(jù)垂直關(guān)系對應(yīng)的向量數(shù)量積為零,即可計算出的坐標,從而可求的長度;

2)根據(jù)兩個平面法向量夾角的余弦值,再結(jié)合幾何體中二面角具體是鈍角還是銳角,從而確定出二面角余弦值的大小.

解(1)如圖,連接,因為菱形,

,且

為坐標原點,的方向分別為軸、軸、軸的正方向,建立空間直角坐標系

,故,,

所以

知,,

從而,即

設(shè),則

因為,故

,所以 (舍去),即

2)由(1)知,

設(shè)平面的法向量為,平面的法向量為

,得故可取,

,得故可取,

從而法向量的夾角的余弦值為,

故所求二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲同學(xué)參加化學(xué)競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.

(Ⅰ)若規(guī)定總分不低于8分即可進入復(fù)賽,求甲同學(xué)進入復(fù)賽的概率;

(Ⅱ)記三個項目中通過考試的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,,在它們交叉路口點處的東北方向建有一個荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺位于兩條垂直公路的角平分線上,與環(huán)形公路的交點記作.游客游覽荷花池時,需沿公路先到達環(huán)形公路.為了分流游客,方便游客游覽荷花池,計劃從靠近公路,的環(huán)形公路上選,兩處(,關(guān)于直線對稱)修建直達觀景臺的玻璃棧道.以,所在的直線為,軸建立平面直角坐標系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù)

1)若百米,點的垂直距離為1百米,求玻璃棧道的總長度;

2)若要使得玻璃棧道的總長度最小為百米,求觀景臺的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)若有兩個極值點,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面ABCD,是正三角形,ACBD的交點為M,又,點NCD中點.

1)求證:平面PAD;

2)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):

已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個方案供企業(yè)選擇:

方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;

方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng), 取得極值,的值;

(Ⅱ)當(dāng)函數(shù)有兩個極值點,總有 成立的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點為棱的中點.

(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;

(Ⅱ)當(dāng)二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請計算出關(guān)于的線性回歸方程,如果不能,請說明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:

車型 報廢年限

1年

2年

3年

4年

總計

10

30

40

20

100

15

40

35

10

100

經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責(zé)人,會選擇哪款車型?

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),,.

查看答案和解析>>

同步練習(xí)冊答案