4.拋物線y2=-4x上橫坐標為-6的點到焦點F的距離為(  )
A.6B.7C.8D.9

分析 直接利用拋物線的定義,求解即可.

解答 解:拋物線y2=-4x上橫坐標為-6的點到焦點F的距離,就是這點到拋物線的準線的距離.
拋物線的準線方程為:x=1,
所以拋物線y2=-4x上橫坐標為-6的點到其焦點的距離|-6-1|=7,
故選:B.

點評 本題考查拋物線的簡單性質(zhì)的應用,拋物線的定義的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,點F(0,2)是拋物線x2=2py的焦點.
(Ⅰ)求拋物線方程;
(Ⅱ)若點P為圓O:x2+y2=1上一動點,直線l是圓O在點P處的切線,直線l與拋物線相交于A,B 兩點(A,B在y軸的兩側(cè)),求四邊形OAFB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設n>1且n∈N+,求證:$\frac{1}{2}<\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}<1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列12,-22,32,-42,…,(-1)n+1n2,….
(1)計算S1,S2,S3,S4的值;
(2)根據(jù)(1)中的結(jié)果,猜想Sn的表達式,并用數(shù)學歸納法進行證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設拋物線y2=2px(p>0)的焦點F,已知拋物線上一點Q,其縱坐標為4,且|QF|=4.
(1)求p的值;
(2)設點Q關(guān)于x軸的對稱點是R,直線l與拋物線交于異于Q、R的不同兩點A、B,且直線QA、QB的斜率之積為-4,求△RAB面積最小時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點P在拋物線y2=4x上,它到拋物線焦點的距離為5,那么點P的坐標為( 。
A.(4,4),(4,-4)B.(-4,4),(-4,-4)C.(5,$2\sqrt{5}$),(5,$-2\sqrt{5}$)D.(-5,$2\sqrt{5}$),(-5,$-2\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.當函數(shù)y=ax(a>1)與函數(shù)y=x有且僅有一個交點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設拋物線y2=2x的焦點為F,過點A(2,2)和B($\frac{3}{2}$,-$\sqrt{3}$)的直線與拋物線的準線相交于C,設△BCF與△ACF的面積分別為S1、S2,則$\frac{{S}_{1}}{{S}_{2}}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=2px(p>0),過焦點F,且傾斜角為60°的直線與拋物線在第一象限交于點M,若|FM|=4,則拋物線方程為y2=4x.

查看答案和解析>>

同步練習冊答案