2.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$,則z=$\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 作出約束條件的平面區(qū)域,易知z=$\frac{y}{x+1}$的幾何意義是點(diǎn)A(x,y)與點(diǎn)D(-1,0)連線的直線的斜率,從而解得.

解答 解:由題意作實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$的平面區(qū)域如下,
z=$\frac{y}{x+1}$的幾何意義是點(diǎn)P(x,y)與點(diǎn)D(-1,0),連線的直線的斜率,由$\left\{\begin{array}{l}{x=1}\\{y=x}\end{array}\right.$,解得A(1,1)
故當(dāng)P在A時(shí),z=$\frac{y}{x+1}$有最小值,
z=$\frac{y}{x+1}$=$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查了平面向量的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了斜率公式的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x≥3或x≤-1},B={x|=-2≤x≤2},則A?B=(  )
A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解關(guān)于x的不等式$\frac{x}{x-1}$≥2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.sin4cos3tan2的值為( 。
A.負(fù)數(shù)B.正數(shù)C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合.終邊在射線3x+4y=0(x>0)上,則sinα等于$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合
(1)若終邊經(jīng)過點(diǎn)P(-1,2),求sin αcos α的值;
(2)若角α的終邊在直線y=-3x上,求tan α+$\frac{3}{cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.經(jīng)過點(diǎn)(2,4)的拋物線的標(biāo)準(zhǔn)方程為y2=8x或x2=y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0,b、c∈R,若f′($\frac{1}{3}$)=0,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若曲線${C_1}:{x^2}+{y^2}-2x=0$與曲線${C_2}:m{x^2}-xy+mx=0$有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)∪(0,\sqrt{3})$C.$(0,\frac{{\sqrt{3}}}{3})$D.$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

同步練習(xí)冊答案