12.已知集合A={x|x≥3或x≤-1},B={x|=-2≤x≤2},則A?B=( 。
A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)

分析 根據(jù)交集的定義寫(xiě)出A?B.

解答 解:集合A={x|x≥3或x≤-1},
B={x|-2≤x≤2},
則A?B={x|-2≤x≤-1}=[-2,-1].
故選:A.

點(diǎn)評(píng) 本題考查了集合的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在空間中,下列說(shuō)法不正確的是( 。
A.三點(diǎn)確定一個(gè)平面B.梯形定是平面圖形
C.平行四邊形一定是平面圖形D.三角形一定是平面圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.觀察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$;1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$…則可歸納出第n-1個(gè)式子為1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線(xiàn)m,n和平面α滿(mǎn)足m⊥α,m⊥n,則n與α的位置關(guān)系為( 。
A.n⊥αB.n?αC.n∥α或n?αD.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$cos({α+β})=\frac{2}{3},cos({α-β})=\frac{1}{3}$,則tanα•tanβ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a,b,c均為實(shí)數(shù),求證:${a^2}+{b^2}+{c^2}≥\frac{1}{3}{({a+b+c})^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)$f(x)=2sin({ωx-\frac{π}{3}})-2cos2θ({ω>0})$的圖象關(guān)于直線(xiàn)$x=-\frac{π}{12}$對(duì)稱(chēng),當(dāng)ω取最小正數(shù)時(shí),方程f(x)=0在區(qū)間$[{0,\frac{π}{2}}]$上有兩個(gè)不等的實(shí)根α,β,則α+β+θ的取值范圍為[kπ+$\frac{3π}{4}$,kπ+$\frac{5π}{6}$)∪(kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.為了旅游業(yè)的發(fā)展,某旅行社組織了14人參加“旅游常識(shí)”知識(shí)競(jìng)賽,每人回答3個(gè)問(wèn)題,答對(duì)題目個(gè)數(shù)及對(duì)應(yīng)人數(shù)統(tǒng)計(jì)結(jié)果見(jiàn)下表:
答對(duì)題目個(gè)數(shù)0123
人數(shù)3254
根據(jù)上表信息,若從14人中任選3人,則3人答對(duì)題目個(gè)數(shù)之和為6的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{14}$D.$\frac{17}{91}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$,則z=$\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案