13.如圖,正方形ABCD內的圖形來自中國古代的太極圖.正方形內切圓中的黑色部分和白色部分關于正方形的中心成中心對稱.在正方形內隨機取一點,求此點取自黑色部分的概率.

分析 根據(jù)圖象的對稱性求出黑色圖形的面積,結合幾何概型的概率公式進行求解即可.

解答 解:根據(jù)圖象的對稱性知,黑色部分為圓面積的一半,設圓的半徑為1,則正方形的邊長為2,
則黑色部分的面積S=$\frac{π}{2}$,
則對應概率P=$\frac{\frac{π}{2}}{4}$=$\frac{π}{8}$.

點評 本題主要考查幾何概型的概率計算,根據(jù)對稱性求出黑色陰影部分的面積是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=|x-$\frac{5}{2}$|+|x-a|,x∈R
( I)求證:當a=-$\frac{1}{2}$時,不等式lnf(x)>1成立;
(II)已知關于x的不等式f(x)≤a在R上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.異面直線l與m所成的角為60°,異面直線l與n所成的角為45°,則異面直線m與n所成的角θ的范圍是(  )
A.15°≤θ≤90°B.60°≤θ≤90°C.15°≤θ≤105°D.30°≤θ≤105°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知復數(shù)z=$\frac{{4+\sqrt{2}i}}{1-i}$,i為虛數(shù)單位,則|z|=( 。
A.9B.3C.$\frac{{3\sqrt{2}}}{2}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,E為AB的中點,PA⊥平面ABCD,PC與平面PAD所成的角的正弦值為$\frac{{\sqrt{6}}}{4}$.
(1)在棱PD上求一點F,使AF∥平面PEC;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖所示的韋恩圖中,全集U=R,若A={x|0≤x<2},B={x|x>1},則陰影部分表示的集合為( 。
A.{x|x>1}B.{x|1<x<2}C.{x|x>2}D.{x|x≥2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某校共有高中、初中、小學學生4000名,其中小學生1600名,初中生人數(shù)是高中生人數(shù)的2倍,現(xiàn)用分層抽樣的方法抽取一個樣本來調查學生每天的課外閱讀量.已知樣本中小學生共有32人,則該樣本中,高中生的人數(shù)是16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.不等式|x-3|+|x-2|≥3的解集是(  )
A.{x|x≥3或x≤1}B.{x|x≥4或x≤2}C.{x|x≥2或x≤1}D.{x|x≥4或x≤1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知A,B,C三點都在體積為$\frac{500π}{3}$的球O的表面上,若$AB=4\sqrt{3}$,∠ACB=60°,則球心O到平面ABC的距離為3.

查看答案和解析>>

同步練習冊答案