18.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,且對(duì)于任意n∈N+都滿足an+1=$\frac{a_n}{{3{a_n}+1}}$,則數(shù)列{an•an+1}的前n項(xiàng)和為( 。
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{2(3n+2)}$

分析 數(shù)列{an}滿足a1=$\frac{1}{2}$,且對(duì)于任意n∈N+都滿足an+1=$\frac{a_n}{{3{a_n}+1}}$,兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,利用等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法即可得出.

解答 解:∵數(shù)列{an}滿足a1=$\frac{1}{2}$,且對(duì)于任意n∈N+都滿足an+1=$\frac{a_n}{{3{a_n}+1}}$,
兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}$=3+$\frac{1}{{a}_{n}}$,即:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項(xiàng)為2,公差為3.
∴$\frac{1}{{a}_{n}}$=2+3(n-1)=3n-1,
∴an=$\frac{1}{3n-1}$,
∴an•an+1=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,
∴數(shù)列{an•an+1}的前n項(xiàng)和=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$
=$\frac{n}{6n+4}$.
故選:D.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法、等差數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)的定義域是[0,3],則函數(shù)y=$\frac{f(2x-1)}{lg(2-x)}$的定義域是{x|$\frac{1}{2}$≤x<2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角的正切值為3$\sqrt{2}$;
(Ⅱ)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q垂直于AP,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{{n^2}+n}}{2}$,數(shù)列{bn}的通項(xiàng)為bn=f(n),且f(n)滿足:①f(1)=$\frac{1}{2}$;②對(duì)任意正整數(shù)m,n,都有f(m+n)=f(m)f(n)成立.
(1)求an與bn;
(2)設(shè)數(shù)列{anbn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在某城市氣象部門(mén)的數(shù)據(jù)中,隨機(jī)抽取100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表
空氣質(zhì)量指數(shù)t(0,50](50,100](100,150](150,200)(200,300](300,+∞)
質(zhì)量等級(jí)優(yōu)輕微污染輕度污染中度污染嚴(yán)重污染
天數(shù)K52322251510
(1)若該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=$\left\{\begin{array}{l}{t,t≤100}\\{2t-100,100<t≤300}\\{\;}\end{array}\right.$且當(dāng)t>300時(shí),y>500,估計(jì)在某一醫(yī)院收治此類(lèi)病癥人數(shù)超過(guò)200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合與曲線 $\stackrel{∧}{y}$=a+blnt,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10)且知$\sum_{i=1}^{10}$lnti=70,$\sum_{i=1}^{10}$yi=6000,$\sum_{i=1}^{10}$yilnti=42500,$\sum_{i=1}^{10}$(lnti2=500試用可線性化的回歸方法,求擬合曲線的表達(dá)式
(附:線性回歸方程$\stackrel{∧}{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y之間的線性回歸方程為$\widehat{y}$=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說(shuō)法錯(cuò)誤的是( 。
x681012
y6m32
A.變量x,y之間呈現(xiàn)負(fù)相關(guān)關(guān)系
B.m=4
C.可以預(yù)測(cè),當(dāng)x=11時(shí),y=2.6
D.由表格數(shù)據(jù)知,該回歸直線必過(guò)點(diǎn)(9,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列函數(shù);
①函數(shù)y=sin(2017π+2016x)是奇函數(shù);
②y=tanx在整個(gè)定義域內(nèi)是增函數(shù);
③x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5}{4}$π)的一條對(duì)稱(chēng)軸方程;
④若α,β是第一象限的角,且α>β,則sinα>sinβ
其中真確命題的序號(hào)是①③ (寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且2Sn=an2+n-1(n∈N+).
(Ⅰ)求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若a+c=$\sqrt{2}$b.
(I)求證:B≤$\frac{π}{2}$;
(Ⅱ)若△ABC的面積為S,且S=tanB,b=2$\sqrt{3}$時(shí),求S.

查看答案和解析>>

同步練習(xí)冊(cè)答案