20.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α為參數(shù)),M為C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}=2\overrightarrow{OM}$,設(shè)點(diǎn)P的軌跡為曲線C2
(1)求C1,C2的極坐標(biāo)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求線段AB的長度.

分析 (1)求出C1,C2的普通方程,即可求C1,C2的極坐標(biāo)方程;
(2)利用極徑的意義,求線段AB的長度.

解答 解:(1)設(shè)點(diǎn)P(x,y),M(2cosα,2+2sinα),
則由$\overrightarrow{OP}=2\overrightarrow{OM}$得:x=4cosα,y=4+4sinα,消參得:x2+(y-4)2=16.
轉(zhuǎn)化為極坐標(biāo)方程得:ρ=8sinθ,所以C2的極坐標(biāo)方程ρ=8sinθ,
同理可得C1的極坐標(biāo)方程ρ=4sinθ.
(2)在極坐標(biāo)系,可得$OA=ρ=4sin\frac{π}{3}=2\sqrt{3}$,$OB=ρ=8sin\frac{π}{3}=4\sqrt{3}$,
所以$|AB|=OB-OA=2\sqrt{3}$.

點(diǎn)評 本題考查三種方程的轉(zhuǎn)化,考查極徑的意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校興趣小組在如圖所示的矩形區(qū)域ABCD內(nèi)舉行機(jī)器人攔截挑戰(zhàn)賽,在E處按$\overrightarrow{EP}$方向釋放機(jī)器人甲,同時(shí)在A處按某方向釋放機(jī)器人乙,設(shè)機(jī)器人乙在Q處成功攔截機(jī)器人甲.若點(diǎn)Q在矩形區(qū)域ABCD內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失。
已知AB=18米,E為AB中點(diǎn),機(jī)器人乙的速度是機(jī)器人甲的速度的2倍,比賽中兩機(jī)器人均按勻速直線運(yùn)動(dòng)方式行進(jìn),記$\overrightarrow{EP}$與$\overrightarrow{EB}$的夾角為θ.
(1)若θ=60°,AD足夠長,則如何設(shè)置機(jī)器人乙的釋放角度才能挑戰(zhàn)成功?(結(jié)果精確到0.1°)
(2)如何設(shè)計(jì)矩形區(qū)域ABCD的寬AD的長度,才能確保無論θ的值為多少,總可以通過設(shè)置機(jī)器人乙的釋放角度使機(jī)器人乙在矩形區(qū)域ABCD內(nèi)成功攔截機(jī)器人甲?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)四棱柱的三視圖如圖所示,若該四棱柱的所有頂點(diǎn)都在同一球面上,則這個(gè)球的表面積為( 。
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,角A,B,C的對邊分別是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.
(Ⅰ)求C的大小;
(Ⅱ)若$c=\sqrt{3}$,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)α,β∈[0,π],且滿足sinαcosβ-cosαsinβ=1,則cos(2α-β)的取值范圍為( 。
A.[0,1]B.[-1,0]C.[-1,1]D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,錯(cuò)誤的是(  )
A.?x∈(0,$\frac{π}{2}$),x>sinx
B.在△ABC中,若A>B,則sinA>sinB
C.函數(shù)f(x)=tanx圖象的一個(gè)對稱中心是($\frac{π}{2}$,0)
D.?x0∈R,sinx0cosx0=$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知m=a+blnb,n=b+blna,若a>b>0,則m,n的大小關(guān)系是( 。
A.m>nB.m<nC.m=nD.大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,且b=$\sqrt{3}$,$\sqrt{3}$sinC=(sinA+$\sqrt{3}$cosA)sinB,則AC邊上的高的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點(diǎn),且經(jīng)過C,D兩點(diǎn),則該雙曲線的離心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{3}+1$

查看答案和解析>>

同步練習(xí)冊答案