分析 (1)由n=1時(shí),b1=S1;n>1時(shí),bn=Sn-Sn-1=,可得bn=3n,再由等差數(shù)列的通項(xiàng)公式可得an=2n-1;
(2)求得cn=an•bn=(2n-1)•3n,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
解答 解:(1)2Sn=3n+1-3,即為Sn=$\frac{1}{2}$(3n+1-3),
當(dāng)n=1時(shí),b1=S1=3,
n>1時(shí),bn=Sn-Sn-1=$\frac{1}{2}$(3n+1-3)-$\frac{1}{2}$(3n-3)=3n,
綜上可得bn=3n,
由a2=b1=3,d=2,可得a1=1,
an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)cn=an•bn=(2n-1)•3n,
Tn=1•3+3•32+5•33+…+(2n-1)•3n,
即有3Tn=1•32+3•33+5•34+…+(2n-1)•3n+1,
兩式相減可得,-2Tn=3+2(32+33+34+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1,
化簡(jiǎn)可得Tn=3+(n-1)•3n+1.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{3}$個(gè)單位 | D. | 向右平移$\frac{π}{3}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2p | B. | p | C. | $\frac{p}{2}$ | D. | $\frac{p}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com