18.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A為單位圓上一點(diǎn),以x軸為始邊,OA為終邊的角為θ(θ≠kπ+$\frac{π}{2}$,k∈Z),若將OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)$\frac{3π}{2}$至OB,則點(diǎn)B的坐標(biāo)為( 。
A.(-cosθ,sinθ)B.(cosθ,-sinθ)C.(-sinθ,cosθ)D.(sinθ,-cosθ)

分析 由題意利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得點(diǎn)B的坐標(biāo).

解答 解:A為單位圓上一點(diǎn),以x軸為始邊,OA為終邊的角為θ(θ≠kπ+$\frac{π}{2}$,k∈Z),
若將OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)$\frac{3π}{2}$至OB,則點(diǎn)B的橫坐標(biāo)為cos(-$\frac{3π}{2}$+θ)=-sinθ,
點(diǎn)B的縱坐標(biāo)為sin(-$\frac{3π}{2}$+θ)=cosθ,故點(diǎn)B的坐標(biāo)為(-sinθ,cosθ),
故選:C.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}$=$\frac{1}{3}$,cos(β-α)=-$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)點(diǎn)A是坐標(biāo)原點(diǎn)O在直線2x-3y+13=0上的射影,對(duì)數(shù)函數(shù)y=logax的圖象恒過(guò)定點(diǎn)B,向量$\overrightarrow{AB}$對(duì)應(yīng)復(fù)數(shù)z0
(1)求復(fù)數(shù)z0;
(2)設(shè)復(fù)數(shù)z滿足|z|=2,求|z-z0|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,A(-2,0),B(2,0),P(x,y)滿足$\overrightarrow{P{A}^{2}}$$+\overrightarrow{P{B}^{2}}$=16,設(shè)點(diǎn)P的軌跡為C1,從C1上一點(diǎn)Q向圓C2:x2+y2=r2(r>0)作兩條切線,切點(diǎn)分別為M,N且∠MQN=60°
(1)求點(diǎn)P的軌跡方程r
(2)當(dāng)點(diǎn)Q在第一象限時(shí),連接切點(diǎn)M,N,分別交x,y軸于點(diǎn)C,D,求△OCD面積最小時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示的程序框圖中,若f(x)=x2,g(x)=x,且h(x)≥m恒成立,則m的最大值是( 。
A.4B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)推理中,屬于類比推理的是( 。
A.因?yàn)殂~、鐵、鋁、金、銀等金屬能導(dǎo)電,所有一切金屬都能導(dǎo)電
B.一切奇數(shù)都不能被2整除,(250+1)是奇數(shù),所以(250+1)不能被2整除
C.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$可以計(jì)算出a2=$\frac{1}{2}$,a3=$\frac{1}{3}$,a4=$\frac{1}{4}$,所以推理出an=$\frac{1}{n}$
D.若雙曲線的焦距是實(shí)軸長(zhǎng)的2倍,則此雙曲線的離心率為2,類似的,若橢圓的焦距是長(zhǎng)軸長(zhǎng)的一半,則此橢圓的離心率為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)A(1,a),圓x2+y2=4.
(1)若過(guò)點(diǎn)A的圓的切線只有一條,求a的值及切線方程;
(2)若過(guò)點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長(zhǎng)為2$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某中學(xué)高三從甲、乙兩個(gè)班中各選出7名同學(xué)參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的眾數(shù)是85,乙班學(xué)生成績(jī)的中位數(shù)是83,則x+y的值為( 。
A.7B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響,現(xiàn)統(tǒng)計(jì)數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在生產(chǎn)現(xiàn)場(chǎng)時(shí),990件產(chǎn)品中合格品有982件,次品有8件;甲不在生產(chǎn)現(xiàn)場(chǎng)時(shí),510件產(chǎn)品中合格品有493件,次品有17件.試分別用列聯(lián)表、獨(dú)立性檢驗(yàn)的方法分析監(jiān)督員甲是否在生產(chǎn)現(xiàn)場(chǎng)對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響?

查看答案和解析>>

同步練習(xí)冊(cè)答案