4.△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c.若a=3,b=4,∠C=60°,則c等于( 。
A.25-12$\sqrt{3}$B.13C.$\sqrt{13}$D.$\sqrt{37}$

分析 利用余弦定理列出關系式,把a,b,cosC的值代入求出c的值即可.

解答 解:∵△ABC中,a=3,b=4,∠C=60°,
∴由余弦定理得:c2=a2+b2-2abcosC=9+16-12=13,
∴c=$\sqrt{13}$.
故選:C.

點評 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.“sinαcosβ+cosαsinβ=$\frac{1}{2}$”是“$α+β=2kπ+\frac{π}{6}$,k∈Z”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設集合U={-2,-1,0,1,2},A={x|x2-x-2=0},則∁UA=(  )
A.{-2,1}B.{-1,2}C.{-2,0,1}D.{2,-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的體積為( 。
A.16B.$\frac{4}{3}$C.$\frac{16}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設集合A={x|x<0},B={x|x2≤1},則A∩B等于( 。
A.(-1,0)B.[-1,0)C.(-∞,-1]D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知0<x<2π,且角x的終邊和它的7倍角的終邊相同,求x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知$α∈({\frac{π}{2},π})$且sinα+cosα=$\frac{{1-\sqrt{3}}}{2}$,
(1)求cosα的值;
(2)若sin(α-β)=-$\frac{3}{5},β∈(\frac{π}{2},π)$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$.
(1)求函數(shù)f(x)的對稱軸方程及相鄰兩條對稱軸間的距離d;
(2)設α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=lnx-x2與g(x)=x2$-\frac{2}{x}$-m的圖象上存在關于原點對稱的點,則實數(shù)m的取值范圍是(  )
A.(-∞,1-ln2]B.[0,1-ln2)C.(1-ln2,1+ln2]D.[1+ln2,+∞)

查看答案和解析>>

同步練習冊答案