12.如圖,已知AB為圓O的一條弦,點(diǎn)P為弧$\widehat{AB}$的中點(diǎn),過點(diǎn)P任作兩條弦PC,PD分別交AB于點(diǎn)E,F(xiàn)
求證:PE•PC=PF•PD.

分析 連結(jié)PA、PB、CD、BC,推導(dǎo)出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,從而E、F、D、C四點(diǎn)共圓.由此能證明PE•PC=PF•PD.

解答 解:連結(jié)PA、PB、CD、BC,
因?yàn)椤螾AB=∠PCB,又點(diǎn)P為弧AB的中點(diǎn),
所以∠PAB=∠PBA,
所以∠PCB=∠PBA,
又∠DCB=∠DPB,
所以∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,
所E、F、D、C四點(diǎn)共圓.
所以PE•PC=PF•PD.

點(diǎn)評 本題考查兩組線段乘積相等的證明,考查弦切角、切割線定理、圓等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a,b,c為正實(shí)數(shù),且a3+b3+c3=a2b2c2,求證:a+b+c≥3$\root{3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1,F(xiàn)2為左,右焦點(diǎn),以F1,F(xiàn)2為直徑的圓與橢圓在第一、三象限的交點(diǎn)分別為A、B,若直線AB與直線x+$\sqrt{3}$y-7=0互相垂直,則橢圓的離心率為( 。
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)A(-4,0),B(-1,0),C(-4,3),動(dòng)點(diǎn)P、Q滿足$\frac{|PA|}{|PB|}$=$\frac{|QA|}{|QB|}$=2,則|$\overrightarrow{CP}$+$\overrightarrow{CQ}$|取值范圍是 ( 。
A.[1,16]B.[6,14]C.[4,16]D.[$\sqrt{13}$,3$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥a}\\{{x}^{3}-3x,x<a}\end{array}\right.$若函數(shù)g(x)=2f(x)-ax恰有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(-$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(ax-1)e2x+x+1(其中e為自然對數(shù)的e底數(shù)).
(Ⅰ)若a=0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對?x∈(0,+∞),f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知i是虛數(shù)單位,復(fù)數(shù)z1=3+yi(y∈R),z2=2-i,且$\frac{z_1}{z_2}=1+i$,則y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度,建立極坐標(biāo)系.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+2cosα\\ y=3+2sinα\end{array}$,(α∈[0,2π],α為參數(shù)),曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{3}})=a({a∈R})$,若曲線C1與曲線C2有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,若$\overrightarrow$•($\overrightarrow$-$\overrightarrow{a}$)=2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案