分析 (1)求出函數的導數,結合二次函數的性質判斷導函數的符號,從而求出函數的單調區(qū)間;
(2)假設存在,根據x1+x2=2m,x1x2=1,得到消元得$ln\frac{1}{x_2}-ln{x_2}=\frac{1}{x_2}-{x_2}$,根據f(x)的單調性判斷函數無零點,得出結論即可.
解答 解:(1)函數f(x)的定義域(0,+∞),
$f'(x)=\frac{{{x^2}-2mx+1}}{x^2}$,令h(x)=x2-2mx+1,
△=4m2-4=4(m2-1),
當△>0即m>1或m<-1時,方程h(x)=0有兩個根,
設方程x2-2mx+1=0的兩根是:x1,x2,且x1<x2,
解得:x1=m-$\sqrt{{m}^{2}-1}$,x2=m+$\sqrt{{m}^{2}-1}$,
∴x1+x2=m,x1•x2=1,
當△≤0時,即m∈[-1,1]時,f′(x)≥0,原函數在定義域上單調遞增,
當m<-1時,△>0,兩根均為負,f(x)在定義域上單調遞增,
當m>1時,△>0,兩根均為正,
故f(x)在區(qū)間(0,m-$\sqrt{{m}^{2}-1}$),(m+$\sqrt{{m}^{2}-1}$,+∞)遞增,在(m-$\sqrt{{m}^{2}-1}$,m+$\sqrt{{m}^{2}-1}$)遞減;
(2)由(1)知函數有兩個極值點時m>1且x1+x2=2m,x1x2=1
AB斜率$k=\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}=2-2m\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}$,
若k=2-2m,則$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}=1$,
兩根均為正且x1x2=1,若x1<x2,則x1<1,x2>1,
消元得$ln\frac{1}{x_2}-ln{x_2}=\frac{1}{x_2}-{x_2}$,
整理得x2-$\frac{1}{{x}_{2}}$-2lnx2=0,
由(1)知$f(x)=x-\frac{1}{x}-2lnx$在區(qū)間(1,+∞)上單調遞增,
因此f(x)>f(1)=0,函數沒有零點,
故這樣的m值不存在.
點評 本題考查了函數的單調性、最值問題,考查導數的應用,是一道綜合題.
科目:高中數學 來源: 題型:選擇題
A. | 1m | B. | 6m | C. | $2\sqrt{5}$m | D. | 4m |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 4+2$\sqrt{2}$ | C. | 4+4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{7}{2}$ | C. | 2 | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com