分析 (1)連結(jié)BD,交AC于O,連結(jié)EO,則PB∥EO,由此能證明PB∥平面EAC.
(2)由PB∥平面EAC,根據(jù)線面平行的性質(zhì)定理能證明GH∥PB.
解答 證明:(1)連結(jié)BD,交AC于O,
連結(jié)EO,則O是BD的中點,
又E是PD的中點,∴PB∥EO,
∵PB?平面EAC,EO?平面EAC,
∴PB∥平面EAC.
(2)由(1)知PB∥平面EAC,
又平面PBM∩平面EAC=GH,
∴根據(jù)線面平行的性質(zhì)定理得:GH∥PB.
點評 本題考查線面平行、線線平行的證明等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查分類與整合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | [0,1) | C. | [0,4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 既有最大值,又有最小值 | B. | 只有最小值,沒有最大值 | ||
C. | 只有最大值,沒有最小值 | D. | 既無最大值,也無最小值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $x∈[0,\frac{π}{2})$ | B. | $(\frac{π}{2},π]$ | C. | $[π,\frac{3π}{2})$ | D. | $(\frac{3π}{2},2π]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com