分析 建立如圖所示的坐標(biāo)系,則A(0,0),E(1,0),D(0,1),F(xiàn)(1.5,0.5),P(cosα,sinα)(0°≤α≤90°),λ,μ用參數(shù)進(jìn)行表示,再利用函數(shù)的單調(diào)性即可求出范圍
解答 解:建立如圖所示的坐標(biāo)系,則A(0,0),E(1,0),D(0,1),F(xiàn)(1.5,0.5),P(cosα,sinα)(0°≤α≤90°),
∵$\overrightarrow{AP}$=λ $\overrightarrow{ED}$+μ $\overrightarrow{AF}$,
∴(cosα,sinα)=λ(-1,1)+μ(1.5,0.5),
∴cosα=-λ+1.5μ,sinα=λ+0.5μ,
∴λ=$\frac{1}{4}$(3sinα-cosα),μ=$\frac{1}{2}$(cosα+sinα),
∴$\frac{2λ}{μ}$=$\frac{3sinα-cosα}{cosα+sinα}$=$\frac{3tanα-1}{tanα+1}$=3-$\frac{4}{1+tanα}$,
設(shè)f(α)=3-$\frac{4}{1+tanα}$,易知函數(shù)f(α)為增函數(shù),
∵0≤α≤90°,
∴f(0)≤f(α)≤f(90°)
∴-1≤f(α)≤3
∴$\frac{2λ}{μ}$的取值范圍是[-1,3].
故答案為:[-1,3].
點(diǎn)評 本題考查平面向量知識的運(yùn)用,考查學(xué)生的計(jì)算能力,正確利用坐標(biāo)系是關(guān)鍵,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 37 | C. | -7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com