19.已知集合M={x|-1≤x<8},N={x|x>4},則M∪N=( 。
A.(4,+∞)B.[-1,4)C.(4,8)D.[-1,+∞)

分析 由已知條件,利用并集定義直接求解.

解答 解:∵集合M={x|-1≤x<8},N={x|x>4},
∴M∪N={x|x≥-1}=[-1,+∞).
故選:D.

點評 本題考查并集的求法,是基礎題,解題時要認真審題,注意并集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知條件p:|x-4|≤6,條件q:x≤1+m,若p是q的充分不必要條件,則m的取值范圍是( 。
A.(-∞,-1]B.(-∞,9]C.[1,9]D.[9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-2,m})$,若$\overrightarrow a∥\overrightarrow b$,則m=( 。
A.-1B.-4C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知全集U=R,集合A={x|2x-1≤1},B={x|y=log2(3-x)}.
(Ⅰ)求集合∁UA∩B;
(Ⅱ)設集合C={x|x<a},若A∪C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)$f(x)=\sqrt{{2^x}-\frac{1}{4}}+ln({1-x})$的定義域是( 。
A.[-1,2)B.(-2,1)C.(-2,1]D.[-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{\sqrt{1-x},x<0}\end{array}\right.$,則f(f(-3))=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.錢大媽常說“便宜沒好貨”,她這句話的意思中:“好貨”是“不便宜”的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且當x∈[-1,0]時,$f(x)={4^x}+\frac{3}{8}$,函數(shù)$g(x)={log_{\frac{1}{2}}}|{x+1}|-\frac{1}{8}$,則關于x的不等式f(x)<g(x)的解集為( 。
A.(-2,-1)∪(-1,0)B.$({-\frac{7}{4},-1})∪({-1,-\frac{1}{4}})$C.$({-\frac{5}{4},-1})∪({-1,-\frac{3}{4}})$D.$({-\frac{3}{2},-1})∪({-1,-\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若直線2ax-by+2=0(a,b∈R)始終平分圓x2+y2+2x-4y+1=0的周長,則ab的取值范圍是(-∞,$\frac{1}{4}$].

查看答案和解析>>

同步練習冊答案