3.關(guān)于函數(shù)f(x)=x•arcsinx有下列命題:
①f(x)的定義域是R;
②f(x)是偶函數(shù);
③f(x)在定義域內(nèi)是增函數(shù);
④f(x)的最大值是$\frac{π}{2}$,最小值是0,
其中正確的命題是②④.(寫出你所認(rèn)為正確的所有命題序號)

分析 對于①-1≤x≤1,∴函數(shù)的定義域不可能為R;對于②兩個奇函數(shù)乘積偶函數(shù);對于③由于是偶函數(shù),則f(x)在定義域內(nèi)不可能單調(diào);對于④左邊單減,右邊單增,故可得結(jié)論.

解答 解:對于①-1≤x≤1,∴函數(shù)的定義域不可能為R,故①錯誤;
對于②f(-x)=f(x),兩個奇函數(shù)乘積偶函數(shù),∴為偶函數(shù),故②正確;
對于③由于是偶函數(shù),則f(x)在定義域內(nèi)不可能單調(diào),故③錯誤;
對于④左邊單減,右邊單增,∴f(x)的最大值是$\frac{π}{2}$,最小值是0,故④正確.
故答案為:②④.

點評 本題的考點是反三角函數(shù)的運用,主要考查反三角函數(shù)的性質(zhì),定義域,單調(diào)性,奇偶性,最值等,有一定的綜合性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若$\overrightarrow a$、$\overrightarrow b$是兩個不共線的非零向量,
(1)若$\overrightarrow a$與$\overrightarrow b$起點相同,則實數(shù)t為何值時,$\overrightarrow{a}$、t$\overrightarrow b$、$\frac{1}{3}$$(\overrightarrow a+\vec b)$三個向量的終點A,B,C在一直線上?
(2)若|$\overrightarrow a$|=|$\overrightarrow b$|,且$\overrightarrow a$與$\overrightarrow b$夾角為60°,則實數(shù)t為何值時,|$\overrightarrow a-t\overrightarrow b$|的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=( 。
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f(n)=cos\frac{nπ}{4}({n∈{N^*}})$,則f(1)+f(2)+…+f(2015)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知角α的頂點在原點,始邊與x軸正半軸重合,點P(-4,3)是角α終邊上一點,則sinα+2cosα=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對邊的長分別為a,b,c,且$a=\sqrt{5}$,b=3,sinC=2sinA.
(1)求c的值;
(2)求cos2A的值和三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)$f(x)=4sinx•{sin^2}({\frac{π}{4}+\frac{x}{2}})+cos2x$,若|f(x)-m|<2成立的充分條件是$\frac{π}{6}≤x≤\frac{2π}{3}$,則實數(shù)m的取值范圍為(0,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)a為實數(shù),函數(shù)f(x)=2x2+(x-a)•|x-a|.
(1)求f(x)的最小值;
(2)設(shè)h(x)=f(x)min,x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x圖象上所有點向右平移$\frac{π}{6}$個單位長度,得到函數(shù)g (x)的圖象,則g(x)圖象的一個對稱中心是( 。
A.($\frac{π}{3}$,0)B.( $\frac{π}{4}$,0)C.(-$\frac{π}{12}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

同步練習(xí)冊答案