科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:填空題
圖2是某學(xué)校一名籃球運動員在五場比賽中所得分數(shù)的莖葉圖,則該運動員在這五場比賽中得分的方差為_________.
(注:方差,其中為x1,x2,…,xn的平均數(shù))
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:填空題
如果執(zhí)行如圖3所示的程序框圖,輸入,則輸出的數(shù) = .
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:填空題
如圖4,在平行四邊形ABCD中 ,AP⊥BD,垂足為P,且= .
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:填空題
對于,將n表示為,當(dāng)時,當(dāng)時為0或1,定義如下:在的上述表示中,當(dāng),a2,…,ak中等于1的個數(shù)為奇數(shù)時,bn=1;否則bn=0.
(1)b2+b4+b6+b8=__;
(2)記cm為數(shù)列{bn}中第m個為0的項與第m+1個為0的項之間的項數(shù),則cm的最大值是___.
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顧客數(shù)(人) |
30 |
25 |
10 |
||
結(jié)算時間(分鐘/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值;
(Ⅱ)求一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.(將頻率視為概率)
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
已知函數(shù)的部分圖像如圖5所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因為
又是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設(shè)AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
某公司一下屬企業(yè)從事某種高科技產(chǎn)品的生產(chǎn).該企業(yè)第一年年初有資金2000萬元,將其投入生產(chǎn),到當(dāng)年年底資金增長了50%.預(yù)計以后每年資金年增長率與第一年的相同.公司要求企業(yè)從第一年開始,每年年底上繳資金d萬元,并將剩余資金全部投入下一年生產(chǎn).設(shè)第n年年底企業(yè)上繳資金后的剩余資金為an萬元.
(Ⅰ)用d表示a1,a2,并寫出與an的關(guān)系式;
(Ⅱ)若公司希望經(jīng)過m(m≥3)年使企業(yè)的剩余資金為4000萬元,試確定企業(yè)每年上繳資金d的值(用m表示).
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
在直角坐標(biāo)系xOy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.[中國
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當(dāng)直線l1,l2都與圓C相切時,求P的坐標(biāo).
查看答案和解析>>
科目: 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com