科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:填空題
圓柱形容器內(nèi)部盛有高度為8 cm的水,若放入三個(gè)相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒(méi)最上面的球(如圖所示),則球的半徑是 _____cm.
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:填空題
若三邊長(zhǎng)分別為、、,內(nèi)切圓的半徑為,則的面積,類比上述命題猜想:若四面體四個(gè)面的面積分別為、、、,內(nèi)切球的半徑為,則四面體的體積
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開(kāi)區(qū)間內(nèi)的極小值點(diǎn)有 個(gè)
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知⊙中,直徑垂直于弦,垂足為,是延長(zhǎng)線上一點(diǎn),切⊙于點(diǎn),連接交于點(diǎn),證明:
【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來(lái)得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角
連接 ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。
解:∵為⊙的切線,∴為弦切角
連接 ∴……………………4分
又∵ 是直徑且垂直弦 ∴ 且……………………8分
∴ ∴
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
在極坐標(biāo)系中,圓:和直線相交于、兩點(diǎn),求線段的長(zhǎng)
【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運(yùn)用。先將圓的極坐標(biāo)方程圓: 即 化為直角坐標(biāo)方程即
然后利用直線 即,得到圓心到直線的距離,從而利用勾股定理求解弦長(zhǎng)AB。
解:分別將圓和直線的極坐標(biāo)方程化為直角坐標(biāo)方程:
圓: 即 即 ,
即, ∴ 圓心, ---------3分
直線 即, ------6分
則圓心到直線的距離,----------8分
則 即所求弦長(zhǎng)為
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的通項(xiàng)公式,
,試通過(guò)計(jì)算的值,推測(cè)出的值。
【解析】本試題主要考查了數(shù)列通項(xiàng)公式的運(yùn)用和歸納猜想思想的運(yùn)用。由的通項(xiàng)公式得到,,并根據(jù)結(jié)果可猜想。
解:……………………2分
…………4分
…………6分
由此猜想,
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
2011年3月日本發(fā)生的9.0級(jí)地震引發(fā)了海嘯和核泄漏。核專家為檢測(cè)當(dāng)?shù)貏?dòng)物受核輻射后對(duì)身體健康的影響,隨機(jī)選取了110只羊進(jìn)行檢測(cè)。其中身體健康的50只中有30只受到高度輻射,余下的60只身體不健康的羊中有10只受輕微輻射。
(1)作出2×2列聯(lián)表
(2)判斷有多大把握認(rèn)為羊受核輻射對(duì)身體健康有影響?
【解析】本試題主要考查了列聯(lián)表的運(yùn)用,以及判定兩個(gè)分類變量之間的相關(guān)性問(wèn)題的運(yùn)用首先根據(jù)題意得到2×2列聯(lián)表:,然后求解的觀測(cè)值為
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714381726681118_ST.files/image004.png">,因此可知有99%的把握可以認(rèn)為羊受核輻射對(duì)身體健康有影響。
解:(1)2×2列聯(lián)表:
輻射程度健康類型 |
高度輻射 |
輕微輻射 |
合 計(jì) |
身體健康 |
30 |
20 |
50 |
身體不健康 |
50 |
10 |
60 |
合 計(jì) |
80 |
30 |
110 |
--------5分
-
(Ⅱ)的觀測(cè)值為
-----9分
而
∴有99%的把握可以認(rèn)為羊受核輻射對(duì)身體健康有影響。
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
在棱長(zhǎng)為的正方體中,是線段的中點(diǎn),.
(1) 求證:^;
(2) 求證://平面;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問(wèn)中,利用,得到結(jié)論,第二問(wèn)中,先判定為平行四邊形,然后,可知結(jié)論成立。
第三問(wèn)中,是邊長(zhǎng)為的正三角形,其面積為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,
所以是直角三角形,其面積為,
同理的面積為, 面積為. 所以三棱錐的表面積為.
解: (1)證明:根據(jù)正方體的性質(zhì),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,
所以,又,所以,,
所以^. ………………4分
(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,
所以為平行四邊形,因此,
由于是線段的中點(diǎn),所以, …………6分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">面,平面,所以∥平面. ……………8分
(3)是邊長(zhǎng)為的正三角形,其面積為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,
所以是直角三角形,其面積為,
同理的面積為, ……………………10分
面積為. 所以三棱錐的表面積為
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓 :()的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線 與橢圓 交于 , 兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說(shuō)明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
查看答案和解析>>
科目: 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí), 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí), 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時(shí)
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。
綜上所述 時(shí),極大值為,無(wú)極小值
時(shí) 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com