科目: 來源: 題型:解答題
(本小題滿分12分)
為了預(yù)防流感,某段時間學(xué)校對教室用藥熏消毒法進行消毒.設(shè)藥物開始釋放后第小時教室內(nèi)每立方米空氣中的含藥量為毫克.已知藥物釋放過程中,教室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為(a為常數(shù)).函數(shù)圖象如圖所示.
根據(jù)圖中提供的信息,解答下列問題:
(1)求從藥物釋放開始每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式;
|
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù),的兩個極值點為,線段的中點為.
(1) 如果函數(shù)為奇函數(shù),求實數(shù)的值;當(dāng)時,求函數(shù)圖象的對稱中心;
(2) 如果點在第四象限,求實數(shù)的范圍;
(3) 證明:點也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),當(dāng)時,函數(shù)在x=2處取得最小值1。
(1)求函數(shù)的解析式;
(2)設(shè)k>0,解關(guān)于x的不等式。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,
(1)求的解析式;
(2)討論函數(shù)的單調(diào)性,并求的值域。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分14分)
設(shè)是定義在上的函數(shù),用分點
將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式()恒成立,則稱為上的有界變差函數(shù).
(1)函數(shù)在上是否為有界變差函數(shù)?請說明理由;
(2)設(shè)函數(shù)是上的單調(diào)遞減函數(shù),證明:為上的有界變差函數(shù);
(3)若定義在上的函數(shù)滿足:存在常數(shù),使得對于任意的、 時,.證明:為上的有界變差函數(shù).
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題満分14分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個根,它們分別為.
(1)求c的值;
(2)求證;
(3)求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分14分)
函數(shù)(為常數(shù))的圖象過點,
(Ⅰ)求的值并判斷的奇偶性;
(Ⅱ)函數(shù)在區(qū)間上有意義,求實數(shù)的取值范圍;
(Ⅲ)討論關(guān)于的方程(為常數(shù))的正根的個數(shù).
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com