相關(guān)習(xí)題
 0  205327  205335  205341  205345  205351  205353  205357  205363  205365  205371  205377  205381  205383  205387  205393  205395  205401  205405  205407  205411  205413  205417  205419  205421  205422  205423  205425  205426  205427  205429  205431  205435  205437  205441  205443  205447  205453  205455  205461  205465  205467  205471  205477  205483  205485  205491  205495  205497  205503  205507  205513  205521  266669 

科目: 來(lái)源: 題型:

證明函數(shù)f(x)=x+
1
x
在(-1,0)上是減少的.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)對(duì)任意的實(shí)數(shù)a,b均有f(a+b)=f(a)•f(b),且當(dāng)x<0時(shí),f(x)>1.
(1)求f(0)的值;
(2)求證:對(duì)任意的x∈R都有f(x)>0;
(3)求證:f(x)在R上為減函數(shù);
(4)當(dāng)f(4)=
1
16
時(shí),解不等式f(x-3)•f(5-x2)<
1
4

查看答案和解析>>

科目: 來(lái)源: 題型:

定義在R上的f(x)滿足f(a)f(b)=f(a+b),(a,b∈R),且f(
1
2
)=
2
,則f(3)=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用,那么[log21]+[log22]+[log23]+…+[log232]的值為(  )
A、15B、45
C、103D、258

查看答案和解析>>

科目: 來(lái)源: 題型:

對(duì)于給定的函數(shù)f(x)=2x-2-x,有下列四個(gè)結(jié)論:
①f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;    
②f(x)在R上是增函數(shù);
③f(|x|)的圖象關(guān)于y軸對(duì)稱;  
④f(|x|)的最小值為0;
其中正確的是
 
(填寫正確的序號(hào)).

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx+ax2-1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)a=1,若不等式f(1+x)+f(1-x)-m<0對(duì)任意的0<x<1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
a
x

(Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為
3
2
,求實(shí)數(shù)a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

某商品進(jìn)貨單價(jià)為10元,按20元一個(gè)銷售能賣20個(gè);若銷售單位每漲價(jià)1元,銷售量就減少1個(gè).要獲得最大利潤(rùn)時(shí),此商品的售價(jià)應(yīng)該為每個(gè)
 
元.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax+lnx,函數(shù)g(x)=ex,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若?x∈(0,+∞),使得不等式g(x)<
x-m+3
x
成立,試求實(shí)數(shù)m的取值范圍;
(Ⅲ)當(dāng)a=0時(shí),對(duì)于?x∈(0,+∞),求證:f(x)<g(x)-2.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)a,b,c∈R+,a+b+c=1求證a3b+b3c+c3a≥abc.

查看答案和解析>>

同步練習(xí)冊(cè)答案