相關習題
 0  228704  228712  228718  228722  228728  228730  228734  228740  228742  228748  228754  228758  228760  228764  228770  228772  228778  228782  228784  228788  228790  228794  228796  228798  228799  228800  228802  228803  228804  228806  228808  228812  228814  228818  228820  228824  228830  228832  228838  228842  228844  228848  228854  228860  228862  228868  228872  228874  228880  228884  228890  228898  266669 

科目: 來源: 題型:解答題

5.已知f(x)=|x-2|-|x-a|.
(Ⅰ)當a=-5時,解不等式f(x)<1;
(Ⅱ)若f(x)≤-|${x-\frac{1}{4}}$|的解集包含[1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知正項等比數(shù)列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2a1+log2a2+…+log2an-nlog23,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知等比數(shù)列{an}的各項均為正數(shù),前n項和為Sn,S3=14,a1•a5=8a3,數(shù)列{bn}的前n項和為Tn,bn+bn+1=log2an
(1)求數(shù)列{an}的通項公式;
(2)求T2n

查看答案和解析>>

科目: 來源: 題型:選擇題

2.將函數(shù)f(x)=cos(ωx-$\frac{π}{2}}$)(ω>0)的圖象向右平移$\frac{π}{4}$個單位長度,所得的圖象經(jīng)過點$({\frac{3π}{4},0})$,則ω的最小值是( 。
A.$\frac{1}{3}$B.1C.$\frac{5}{3}$D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知命題p:?x∈(0,$\frac{π}{2}}$),sinx<x,則( 。
A.p是真命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥xB.p是真命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0
C.p是假命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥xD.p是假命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,已知四棱錐P-ABCD,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.
(Ⅰ)證明:MN∥平面PAD;
(Ⅱ)若PA與平面ABCD所成的角為45°,求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.如圖,直線在平面α外,直線m1,m2,n均在平面α內(nèi),若m1∥m2,且m1,m2均與n相交,下列能證明l⊥α的是( 。
A.l⊥m1且l⊥m2B.l⊥m1且l⊥nC.l⊥m1D.l⊥n

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖1,在等腰梯形ABCD中,BC∥AD,BC=$\frac{1}{2}$AD=2,∠A=60°,E為AD中點,點O,F(xiàn)分別為BE,DE的中點.將△ABE沿BE折起到△A1BE的位置,使得平面A1BE⊥平面BCDE(如圖2).
(Ⅰ)求證:A1O⊥CE;
(Ⅱ)求直線A1B與平面A1CE所成角的正弦值;
(Ⅲ)側棱A1C上是否存在點P,使得BP∥平面A1OF?若存在,求出$\frac{{{A_1}P}}{{{A_1}C}}$的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

17.若向量$\overrightarrow a$=(4,2,4),$\overrightarrow b$=(6,3,-2),則(2$\overrightarrow a$-3$\overrightarrow b$)•($\overrightarrow a$+2$\overrightarrow b$)=2.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足a4-a2=2,且a1,a3,a7成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=$\frac{1}{{{a}_{n}}^{2}-1}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案