相關(guān)習(xí)題
 0  228723  228731  228737  228741  228747  228749  228753  228759  228761  228767  228773  228777  228779  228783  228789  228791  228797  228801  228803  228807  228809  228813  228815  228817  228818  228819  228821  228822  228823  228825  228827  228831  228833  228837  228839  228843  228849  228851  228857  228861  228863  228867  228873  228879  228881  228887  228891  228893  228899  228903  228909  228917  266669 

科目: 來源: 題型:解答題

7.各項(xiàng)均為正數(shù)的數(shù)列{an}中,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2an2+an-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)求證:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}$<1.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知數(shù)列{an},a1=$\frac{1}{2}$,an+1=$\frac{{3{a_n}}}{{{a_n}+3}}$.
求:(1)寫出a2,a3,a4,a5;
(2)求出數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目: 來源: 題型:解答題

4.正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2,bn=(-1)nSn
(1)求{an}通項(xiàng)公式
(2)求和T10=b1+b2+b3+…b10

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,f(0))處的切線l與直線x-y+3=0平行,若數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項(xiàng)和為Sn,則S2016=$\frac{2016}{2017}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.在平行四邊形ABCD中,AB⊥BD,4•AB2+2•BD2=1.將此平行四邊形沿BD折成直二面角,則三棱錐A-BCD外接球的表面積為$\frac{π}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.如圖,在三棱錐D-ABC中,已知AB=2,$\overrightarrow{AC}$•$\overrightarrow{BD}$=-3,設(shè)AD=a,BC=b,CD=c,則$\frac{c^2}{ab+1}$的最小值為2.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知f(x)=$\sqrt{-{x}^{2}+10x-9}$,g(x)=[f(x)]2+f(x2)的定義域?yàn)閇1,3].

查看答案和解析>>

科目: 來源: 題型:解答題

7.三個(gè)數(shù)a,b,c成等差數(shù)列,其和為15,且3b-6a=c,求這三個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)向量$\overrightarrow{a}$=(1,-3),$\overrightarrow$=(-1,-2).
(1)若表示向量4$\overrightarrow{a}$,-2$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrow{c}$的有向線段首尾順次相接能構(gòu)成三角形,求向量$\overrightarrow{c}$的坐標(biāo);
(2)在(1)的條件下,若|λ$\overrightarrow{a}$+$\overrightarrow{c}$|=3$\sqrt{5}$,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案