相關習題
 0  229777  229785  229791  229795  229801  229803  229807  229813  229815  229821  229827  229831  229833  229837  229843  229845  229851  229855  229857  229861  229863  229867  229869  229871  229872  229873  229875  229876  229877  229879  229881  229885  229887  229891  229893  229897  229903  229905  229911  229915  229917  229921  229927  229933  229935  229941  229945  229947  229953  229957  229963  229971  266669 

科目: 來源: 題型:解答題

10.用長為50m的籬笆圍成一個一邊靠墻的矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大?最大值是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.
(Ⅰ)求$\overrightarrow{a}$•$\overrightarrow$;
(Ⅱ)若向量λ$\overrightarrow{a}$+2$\overrightarrow$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,求實數λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在平面直角坐標系中,O為坐標原點,A(1,1),B(2,0),|$\overrightarrow{OC}$|=1.
(1)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角;
(2)若$\overrightarrow{OC}$與$\overrightarrow{OA}$垂直,求點C的坐標;
(3)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設a,b,c>0,若abc=a+b+c,且$\frac{1}$+$\frac{1}{c}$=2,則abc的最小值為( 。
A.1B.6C.8D.3$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.證明關于函數y=[x]的如下不等式:
(1)當x>0時,1-x<x[$\frac{1}{x}$]≤1;
(2)當x<0時,1≤x[$\frac{1}{x}$]<1-x.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.下列說法正確的是(  )
A.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目: 來源: 題型:解答題

4.為了滿足社區(qū)居民健身活動,某社區(qū)準備在一塊大約400m×400m的接近正方形荒地上建一個健身活動廣場,首先要建設如圖所示的一個總面積為4000m2的矩形場地,其中陰影部分為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為健身運動場地(其中兩個小場地形狀相同),怎樣設計矩形場地的長和寬,使塑膠運動場地占地面積最大,并求出最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.設等差數列{an}的前n項和為Sn,若a2=-11,a5+a9=-2,則當Sn取最小值時,n等于7.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow b$,則$\frac{1}{m}$+$\frac{8}{n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知正實數a,b滿足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,則a+b的取值范圍是[$\sqrt{2}$+$\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習冊答案