相關習題
 0  230167  230175  230181  230185  230191  230193  230197  230203  230205  230211  230217  230221  230223  230227  230233  230235  230241  230245  230247  230251  230253  230257  230259  230261  230262  230263  230265  230266  230267  230269  230271  230275  230277  230281  230283  230287  230293  230295  230301  230305  230307  230311  230317  230323  230325  230331  230335  230337  230343  230347  230353  230361  266669 

科目: 來源: 題型:填空題

20.如圖(1)有面積關系:$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$,則圖(2)有體積關系:$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知兩個同底的正四棱錐的所有頂點都在同一球面上,它們的底面邊長為2,體積的比值為$\frac{1}{2}$,則該球的表面積為9π.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.某校安排四個班到三個工廠進行社會實踐,每個班去一個工廠,每個工廠至少安排一個班,不同的安排方法共有(  )
A.24B.36C.48D.60

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知四面體ABCD的一條棱長為a,其余各棱長均為2$\sqrt{3}$,且所有頂點都在表面積為20π的球面上,則a的值等于(  )
A.3$\sqrt{3}$B.2$\sqrt{5}$C.3$\sqrt{2}$D.3

查看答案和解析>>

科目: 來源: 題型:填空題

16.對于非零實數(shù)a,b,c,以下四個命題都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,則b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么類比于此,對于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,相應命題仍然成立的所有序號是①③.

查看答案和解析>>

科目: 來源: 題型:解答題

15.在直角坐標系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O為極點,x軸的正半軸為極軸的極坐標系中,過極點作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標方程;
(2)設AB中點為M,求動點M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.下面給出了四個類比推理,結論正確的是( 。
①由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$)
②在正三角形ABC中,若D是邊BC的中點,G是三角形ABC的重心,則$\frac{AG}{GD}$=2;類比推出:在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內部一點O到四面體各面的距離都相等,則$\frac{AO}{OM}$=3.
③a,b為實數(shù),若a2+b2=0則a=b=0;類比推出:z1,z2為復數(shù),若z12+z22=0則z1=z2
④若數(shù)列{an}是等差數(shù)列,對于bn=$\frac{1}{n}({a_1}$+a2+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目: 來源: 題型:選擇題

13.下面幾種推理是類比推理的是( 。
①由直角三角形、等腰三角形、等邊三角形內角和是180°,得出所有三角形的內角和都是180°;
②由f(x)=cosx,滿足f(-x)=f(x),x∈R,得出f(x)=cosx是偶函數(shù);
③由正三角形內一點到三邊距離之和是一個定值,得出正四面體內一點到四個面距離之和是一個定值.
A.①②B.C.①③D.②③

查看答案和解析>>

科目: 來源: 題型:選擇題

12.下面給出了四個類比推理.
①a,b為實數(shù),若a2+b2=0則a=b=0;類比推出:z1、z2為復數(shù),若z12+z22=0,則z1=z2=0.
②若數(shù)列{an}是等差數(shù)列,bn=$\frac{1}{n}$(a1+a2+a3+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,dn=$\root{n}{{c}_{1}•{c}_{2}•{c}_{3}•…•{c}_{n}}$,則數(shù)列{dn}也是等比數(shù)列.
③若a、b、c∈R.則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$為三個向量.則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)
④若圓的半徑為a,則圓的面積為πa2;類比推出:若橢圓的長半軸長為a,短半軸長為b,則橢圓的面積為πab.
上述四個推理中,結論正確的是( 。
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在平面幾何中,已知三角形ABC的面積為S,周長為L,求三角形內切圓半徑時,可用如下方法,設圓O為內切圓圓心,則S=S△OAB+S△OBC+S△OAC=$\frac{1}{2}$r|AB|+$\frac{1}{2}$r|BC|+$\frac{1}{2}$r|AC|=$\frac{1}{2}$rL,∴r=$\frac{2S}{L}$
類比此類方法,已知三棱錐的體積為V,表面積為S,各棱長之和為L,則內切球半徑r為( 。
A.$\frac{2V}{S}$B.$\frac{2V}{L}$C.$\frac{3V}{S}$D.$\frac{3V}{L}$

查看答案和解析>>

同步練習冊答案