相關習題
 0  230314  230322  230328  230332  230338  230340  230344  230350  230352  230358  230364  230368  230370  230374  230380  230382  230388  230392  230394  230398  230400  230404  230406  230408  230409  230410  230412  230413  230414  230416  230418  230422  230424  230428  230430  230434  230440  230442  230448  230452  230454  230458  230464  230470  230472  230478  230482  230484  230490  230494  230500  230508  266669 

科目: 來源: 題型:解答題

8.如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.
(Ⅰ)證明:Q為BB1的中點;
(Ⅱ)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.
(Ⅰ)求證:A1C⊥平面ABC1
(Ⅱ)求二面角A-BC1-A1的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.半徑為R的球O中有兩個半徑分別為2$\sqrt{3}$與2$\sqrt{2}$的截面圓,它們所在的平面互相垂直,且兩圓的公共弦長為R,則R=( 。
A.4$\sqrt{3}$B.5C.3$\sqrt{3}$D.4

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D為AB的中點
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求異面直線AC1與CB1所成角的余弦值;
(Ⅲ)求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在三棱柱ABC-A1B1C1中,已知AA1=AB=AC,BC=$\sqrt{2}$AB,且AA1⊥平面ABC,點M、Q分別是BC、CC1的中點,點P是棱A1B1上的任一點.
(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ=$\frac{2}{3}$,試確定點P在棱A1B1上的位置,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知圓C過點A(1,2)和B(1,10),且與直線x-2y-1=0相切.
(1)求圓C的方程;
(2)設P為圓C上的任意一點,定點Q(-3,-6),當點P在圓C上運動時,求線段PQ中點M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.用向量法解決下列問題:
(Ⅰ)若AC的中點為E,求A1C與DE所成的角;
(Ⅱ)求二面角B1-AC-D1(銳角)的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)設點F是棱BC上一點,若二面角A-DE-F的余弦值為$\frac{{\sqrt{10}}}{10}$,試確定點F在BC上的位置.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知四棱錐P-ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點.
(1)求證:PB∥平面ACE;
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1,$BC=\sqrt{2}$.將△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分別為BE1,CD的中點.如圖2.
(Ⅰ)求證:MN∥平面ADE1
(Ⅱ)求證:AM⊥E1C;
(Ⅲ)求平面AE1N與平面BE1C所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案