相關(guān)習(xí)題
 0  231003  231011  231017  231021  231027  231029  231033  231039  231041  231047  231053  231057  231059  231063  231069  231071  231077  231081  231083  231087  231089  231093  231095  231097  231098  231099  231101  231102  231103  231105  231107  231111  231113  231117  231119  231123  231129  231131  231137  231141  231143  231147  231153  231159  231161  231167  231171  231173  231179  231183  231189  231197  266669 

科目: 來(lái)源: 題型:選擇題

8.已知m,n是兩條不同的直線,σ,β是兩個(gè)不同的平面,則下列命題中正確的是( 。
A.若σ⊥β,σ∩β=m,n⊥m,則n⊥σ或n⊥β
B.若m不垂直于σ,則m不可能垂直于σ內(nèi)的無(wú)數(shù)條直線
C.若σ∩β=m,m∥n,且n?σ,n?β,則n∥σ且n∥β
D.若σ⊥β,m∥n,n⊥β,則m∥σ

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.若命題p:?x∈Z,ex<1,則?p為( 。
A.?x∈Z,ex<1B.?x∉Z,ex<1C.?x∈Z,ex≥1D.?x∉Z,ex≥1

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.今年NBA總決賽在勇士和騎士隊(duì)之間進(jìn)行.按照規(guī)則,要想獲得總冠軍的隊(duì)伍需要在七場(chǎng)比賽中獲勝四場(chǎng)(如果提前贏得比賽,則剩下的就不用繼續(xù);同時(shí)要注意的是,籃球比賽沒(méi)有平局,每場(chǎng)必須分出勝負(fù)).假設(shè)勇士隊(duì)每場(chǎng)比賽獲勝的概率是$\frac{1}{2}$,且各場(chǎng)比賽獲勝與否彼此獨(dú)立,用X表示勇士隊(duì)在整個(gè)比賽中的獲勝場(chǎng)數(shù),試回答以下問(wèn)題:
(1)計(jì)算勇士隊(duì)至少獲勝一場(chǎng)的概率;
(2)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.某次測(cè)驗(yàn)有3個(gè)選擇題,每個(gè)題有A,B,C,D共4個(gè)選項(xiàng),某考生對(duì)每個(gè)題都有隨機(jī)選一個(gè)選項(xiàng)作為答案,則他第一題不選A和C,且3個(gè)題的選項(xiàng)互不相同的概率為$\frac{3}{16}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交點(diǎn)為P,過(guò)點(diǎn)F作直線與拋物線C交于點(diǎn)A,B,若AB⊥PB,則|AF|-|BF|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.若Cn+13=Cn3+Cn4,則n的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.曲線y=5x+lnx在點(diǎn)(1,5)處的切線方程為(  )
A.4x-y+1=0B.4x-y-1=0C.6x-y+1=0D.6x-y-1=0

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.極坐標(biāo)方程ρ=2sinθ表示的曲線是( 。
A.直線B.C.拋物線D.雙曲線

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時(shí),f(x)=2x,則下列不等式中正確的是( 。
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1≠0,2an-a1=S1•Sn(n∈N*).
(1)試求a1之值,并確定數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{(lo{g}_{2}{a}_{n+1})•(lo{g}_{2}{a}_{n+2})}$,n∈N*,試求{bn}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案