相關(guān)習(xí)題
 0  231027  231035  231041  231045  231051  231053  231057  231063  231065  231071  231077  231081  231083  231087  231093  231095  231101  231105  231107  231111  231113  231117  231119  231121  231122  231123  231125  231126  231127  231129  231131  231135  231137  231141  231143  231147  231153  231155  231161  231165  231167  231171  231177  231183  231185  231191  231195  231197  231203  231207  231213  231221  266669 

科目: 來(lái)源: 題型:選擇題

1.已知θ∈(0,π),則y=$\frac{1}{{{{sin}^2}θ}}+\frac{9}{{{{cos}^2}θ}}$的最小值為(  )
A.6B.10C.12D.16

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.(1)已知t>1,x∈(0,+∞),證明:xt≥1+t(x-1);
(2)設(shè)0<a≤b<1,證明:aa+bb≥ab+ba

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.如圖所示,正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,DD1=2,E為DD1的中點(diǎn),M為AC1的中點(diǎn),連結(jié)C1E,CE,AC,AE,ME,CM.
(1)求證:ME⊥平面ACC1;
(2)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.
(1)請(qǐng)估算參加這次知識(shí)競(jìng)賽的高一年級(jí)學(xué)生成績(jī)的眾數(shù)和高二年級(jí)學(xué)生成績(jī)的平均值;
(2)完成下面2×2列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?
成績(jī)小于60分人數(shù)成績(jī)不小于60分人數(shù)合計(jì)
高一
高二
合計(jì)
附:臨界值表及參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.一個(gè)多面體的三視圖如圖所示,則此多面體的外接球的表面積為(  )
A.$\sqrt{14}π$B.14πC.$\sqrt{7}π$D.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.(1)已知t>1,x∈(-1,+∞),證明:(1+x)t≥1+tx;
(2)設(shè)0<a≤b<1,證明:aa+bb≥ab+ba

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.如圖所示,正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,DD1=2,E為DD1的中點(diǎn),連結(jié)C1E,CE,AC,AE,AC1,B1E.
(1)求證:B1E⊥AC;
(2)求點(diǎn)C1到平面AEC的距離;
(3)求二面角C1-AE-C的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=-2x2+3x(0<x≤2)的值域是( 。
A.$[{-2,\frac{9}{8}}]$B.$({-∞,\frac{9}{8}}]$C.$({0,\frac{9}{8}}]$D.$[{\frac{9}{8},+∞})$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.在△ABC中,已知2$\sqrt{3}$absinC=a2+b2-c2,則C的度數(shù)為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.計(jì)算
(1)(5-6i)+(-2-i)-(3+4i)
(2)$\frac{1-i}{1+i}$+i.

查看答案和解析>>

同步練習(xí)冊(cè)答案