相關(guān)習題
 0  231097  231105  231111  231115  231121  231123  231127  231133  231135  231141  231147  231151  231153  231157  231163  231165  231171  231175  231177  231181  231183  231187  231189  231191  231192  231193  231195  231196  231197  231199  231201  231205  231207  231211  231213  231217  231223  231225  231231  231235  231237  231241  231247  231253  231255  231261  231265  231267  231273  231277  231283  231291  266669 

科目: 來源: 題型:解答題

1.在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系,己知直線l的極坐標方程為ρcosθ-ρsinθ=2,曲線C的極坐標方程為ρsin2θ=2pcosθ(p>0).
(1)設(shè)t為參數(shù),若x=-2+$\frac{\sqrt{2}}{2}$t,求直線l的參數(shù)方程;
(2)已知直線l與曲線C交于P、Q,設(shè)M(-2,-4),且|PQ|2=|MP|•|MQ|,求實數(shù)p的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知數(shù)列{an}中對于任意正整數(shù)n都有an+1=${a}_{n}^{2}$+can,其中c為實常數(shù).
(Ⅰ)若c=2,a1=1,求數(shù)列{an}的通項公式;
(Ⅱ)若c=0,記Tn=(a1-a2)a3+(a2-a3)a4+…+(an-an+1)an+2,證明:
1)當0<a1≤$\frac{1}{2}$時,Tn<$\frac{1}{32}$;
2)當$\frac{1}{2}$<a1<1時,Tn<$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點,且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

科目: 來源: 題型:解答題

18.以原點為極點,x軸的非負半軸為極軸建立極坐標系.已知A(2,π),B(2,$\frac{π}{2}$),圓C的極坐標方程為ρ2-6ρcosθ+8ρsinθ+21=0.F為圓C上的任意一點.
(1)寫出圓C的參數(shù)方程;
(2)求△ABF的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.(1)已知a>0,函數(shù)f(x)=x+$\frac{a}{x}$(x>0),證明:函數(shù)f(x)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)上是增函數(shù);
(2)求函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-4x+3)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-6ax2,其中a≥0.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

15.求函數(shù)f(x)=2x3-6x2+7的極值和單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=2ax-$\frac{1}{x^2}$,x∈(0,1].若函數(shù)f(x)在(0,1]上是增函數(shù),則實數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知三棱柱ABO-DCE的頂點A、B、C、D、E均在以頂點O為球心、半徑為2的球面上,其中AB=2,則三棱柱的側(cè)面積為(  )
A.2+2$\sqrt{3}$B.2+4$\sqrt{3}$C.4+4$\sqrt{3}$D.4+6$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖所示,AB是圓O的直徑,BC與圓O相切于B,∠ADC+∠DCO=180°
(Ⅰ)證明:∠BCO=∠DCO;
(Ⅱ)若⊙O半徑為R,求AD•OC的值.

查看答案和解析>>

同步練習冊答案