相關(guān)習(xí)題
 0  231170  231178  231184  231188  231194  231196  231200  231206  231208  231214  231220  231224  231226  231230  231236  231238  231244  231248  231250  231254  231256  231260  231262  231264  231265  231266  231268  231269  231270  231272  231274  231278  231280  231284  231286  231290  231296  231298  231304  231308  231310  231314  231320  231326  231328  231334  231338  231340  231346  231350  231356  231364  266669 

科目: 來源: 題型:解答題

15.如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2,點E是SD的中點,O是AC與BD的交點.
(1)求證:OE∥平面SBC;
(2)求點E到平面SBC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,AC為線段BD的垂直平分線,且AE=BE=$\frac{1}{2}$CE=1,現(xiàn)將△BCD沿線段BD翻折到PBD,使二面角P-BD-A為60°.
(1)證明:PA⊥平面ABD;
(2)設(shè)AB的中點為F,求點F到平面PBD的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知棱長3的正方體ABCD-A1B1C1D1中,長為2的線段MN的一端點M在DD1上運動,另一個端點N在底面ABCD內(nèi)運動,線段EF在平面BC1A1內(nèi),則MN中點P到EF距離的最小值為( 。
A.$\sqrt{3}$-1B.$\frac{3\sqrt{2}}{2}$-1C.$\frac{3\sqrt{3}}{2}$-1D.2$\sqrt{3}$-1

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知f(x)=$\frac{x+1}{{e}^{x}}$(e是自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的極大值;
(Ⅱ)令h(x)=a+2f′(x)(a∈R),若h(x)有兩個零點,x1,x2(x1<x2),求a的取值范圍;
(Ⅲ)設(shè)F(x)=aex-x2,在(Ⅱ)的條件下,試證明0<F(x1)<1.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-kx.
(1)若k>0,且對于任意x∈[0,+∞),f(x)>0恒成立,試確定實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)=f(x)+f(-x),
     求證:lnF(1)+lnF(2)+…+lnF(n)>$\frac{n}{2}ln$(en+1+2).(n∈N+).

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t為參數(shù)),在直角坐標系xOy中,以O(shè)點為極點,x軸的非負半軸為極軸,以相同的長度單位建立極坐標系,設(shè)圓M的方程為ρ2-6ρsinθ=-8.
(Ⅰ)求圓M的直角坐標方程;
(Ⅱ)若直線l截圓M所得弦長為$\sqrt{3}$,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax在點(t,f(t))處切線方程為y=2x-1
(Ⅰ)求a的值
(Ⅱ)若$-\frac{1}{2}≤k≤2$,證明:當(dāng)x>1時,$f(x)>k({1-\frac{3}{x}})+x-1$
(Ⅲ)對于在(0,1)中的任意一個常數(shù)b,是否存在正數(shù)x0,使得:${e^{f({{x_0}+1})-2{x_0}-1}}+\frac{2}x_0^2<1$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,是一曲邊三角形地塊,其中曲邊AB是以A為頂點,AC為對稱軸的拋物線的一部分,點B到AC邊的距離為2Km,另外兩邊AC、BC的長度分別為8Km,2$\sqrt{5}$Km.現(xiàn)欲在此地塊內(nèi)建一形狀為直角梯形DECF的科技園區(qū).求科技園區(qū)面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在半徑為$10\sqrt{3}(m)$的半圓形(其中O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點C、D在圓弧上,點A、B在半圓的直徑上,現(xiàn)將此矩形鋁皮ABCD卷成一個以BC為母線的圓柱形罐子的側(cè)面(注:不計剪裁和拼接損耗),設(shè)矩形的邊長BC=x(m),圓柱的側(cè)面積為S(m2)、體積為V(m3),
(1)分別寫出圓柱的側(cè)面積S和體積V關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,才能使得圓柱的側(cè)面積S最大?
(3)當(dāng)x為何值時,才能使圓柱的體積V最大?并求出最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.關(guān)于x的方程$|\begin{array}{l}{1}&{x}&{{x}^{2}}\\{1}&{2}&{4}\\{1}&{3}&{9}\end{array}|$=0的解為x=2或x=3.

查看答案和解析>>

同步練習(xí)冊答案