分析 (1)證明:PA⊥AE,BD⊥PA,即可證明PA⊥平面ABD;
(2)過A做AO⊥PE,垂足為O,則AO⊥平面PBD,求出AO,利用AB的中點(diǎn)為F,即可求點(diǎn)F到平面PBD的距離.
解答 (1)證明:由題意,∠PEA=60°,AE=1,PE=2,
∴PA⊥AE,
∵PE⊥BD,AE⊥BD,PE∩AE=E,
∴BD⊥平面PAE,
∴BD⊥PA,
∵AE∩BD=E,
∴PA⊥平面ABD;
(2)解:過A做AO⊥PE,垂足為O,則AO⊥平面PBD.
∴AO=AEsin60°=$\frac{\sqrt{3}}{2}$,
∵AB的中點(diǎn)為F,
∴點(diǎn)F到平面PBD的距離為$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查線面垂直的判定,考查點(diǎn)到平面的距離,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行 | B. | 垂直 | C. | 斜交 | D. | 不確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com