相關(guān)習(xí)題
 0  231364  231372  231378  231382  231388  231390  231394  231400  231402  231408  231414  231418  231420  231424  231430  231432  231438  231442  231444  231448  231450  231454  231456  231458  231459  231460  231462  231463  231464  231466  231468  231472  231474  231478  231480  231484  231490  231492  231498  231502  231504  231508  231514  231520  231522  231528  231532  231534  231540  231544  231550  231558  266669 

科目: 來源: 題型:選擇題

16.已知在三棱錐P-ABC中,PA⊥面ABC,PC⊥AB,若三棱錐P-ABC的外接球的半徑是3,S=S△ABC+S△ABP+S△ACP,則S的最大值是( 。
A.36B.28C.26D.18

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若正三棱柱的所有棱長均為a,且其體積為2$\sqrt{3}$,則此三棱柱外接球的表面積是( 。
A.$\frac{8}{3}$πB.$\frac{28}{3}$πC.D.$\frac{4}{3}$π

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知四棱錐P-ABCD的底面是邊長為6的正方形,側(cè)棱PA⊥底面ABCD,且PA=8,則該四棱錐的表面積是108.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.側(cè)棱長和底面邊長均為1的正四棱錐的側(cè)面積為( 。
A.$\sqrt{3}$B.2C.3D.$\frac{3\sqrt{3}}{4}$

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知正三棱錐的體積為9$\sqrt{3}$cm3,高為3cm.則它的全面積為27$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.證明:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2-$\frac{1}{n}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.在半徑為2的球面中,有一個底面是等邊三角形,側(cè)棱與底面垂直的三棱柱的頂點都在這個球面上,則該三棱柱的側(cè)面積的最大值為12$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)函數(shù)y=$\frac{{x}^{2}-x+n}{{x}^{2}+1}$(n∈N*)的最小值為an,最大值為bn,且cn=$\frac{1}{2}$$\sqrt{4{a}_{n}_{n}+1}$.
(1)求數(shù)列{cn}的通項公式;
(2)設(shè)Tn=$\frac{1}{{c}_{1}}$$+\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求證:2($\sqrt{n+1}$-1)<Tn<2$\sqrt{n}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知正六棱錐的底面邊長為2,側(cè)棱長為$\sqrt{5}$,則該正六棱錐的表面積為$6\sqrt{3}$+12.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)在點(1,0)處的切線;
(2)若g(x)=-x2+ax-3,且不等式g(x)-2f(x)≤0對一切x>0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)x∈(0,+∞)時,求證:exlnx+$\frac{2{e}^{x-1}}{x}$>1.

查看答案和解析>>

同步練習(xí)冊答案